1 mV and 20 nA

3.0V/µs

LH0021/LH0021C 1.0 Amp Power Operational Amplifier LH0041/LH0041C 0.2 Amp Power Operational Amplifier

General Description

The LH0021/LH0021C and LH0041/LH0041C are general purpose operational amplifiers capable of delivering large output currents not usually associated with conventional IC Op Amps. The LH0021 will provide output currents in excess of one ampere at voltage levels of $\pm 12V$; the LH0041 delivers currents of 200 mA at voltage levels closely approaching the available power supplies. In addition, both the inputs and outputs are protected against overload. the devices are compensated with a single external capacitor and are free of any unusual oscillation or latch-up problems.

The excellent input characteristics and high output capability of the LH0021 make it an ideal choice for power applications such as DC servos, capstan drivers, deflection yoke drivers, and programmable power supplies.

The LH0041 is particularly suited for applications such as torque driver for inertial guidance systems, diddle yoke driver for alpha-numeric CRT displays, cable drivers, and programmable power supplies for automatic test equipment.

The LH0021 is supplied in a 8 pin TO-3 package rated at 20 watts with suitable heatsink. The LH0041 is supplied in both

12 pin TO-8 (2.5 watts with clip on heatsink) and a power 8 pin ceramic DIP (2 watts with suitable heatsink). The LH0021 and LH0041 are guaranteed over the temperature range of $-55^{\circ}\mathrm{C}$ to $+125^{\circ}\mathrm{C}$ while the LH0021C and LH0041C are guaranteed from $-25^{\circ}\mathrm{C}$ to $+85^{\circ}\mathrm{C}$.

Features

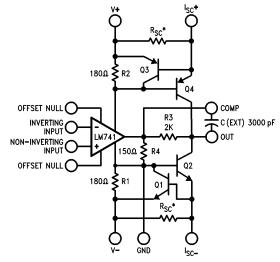
■ Output current

LH0021 1.0 Amp

LH0041 0.2 Amp

 \blacksquare Output voltage swing LH0021 $$\pm 12 V$ into $10\Omega$$ LH0041 $$\pm 14 V$ into $10\Omega$$

■ Wide full power bandwidth
 15 kHz
 ■ Low standby power
 100 mW at ±15V


■ Low standby power 100 mW at ±15\
■ Low input offset

voltage and current

High slew rate

■ High open loop gain 100 dB

Schematic Diagram

*R_{SC} external on "G" and "K" packages. R_{SC} internal on "J" package. Offset Null connections available only on "G" package.

TL/H/9298-1

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \text{Supply Voltage} & \pm 18 \text{V} \\ \text{Power Dissipation} & \text{See Curves} \\ \text{Differential Input Voltage} & \pm 30 \text{V} \\ \text{Input Voltage (Note 1)} & \pm 15 \text{V} \end{array}$

Peak Output Current (Note 2)

LH0021/LH0021C 2.0 Amps LH0041/LH0041C 0.5 Amps Output Short Circuit Duration (Note 3)

Operating Temperature Range LH0021/LH0041

LH0021/LH0041 LH0021C/LH0041C $-55^{\circ}\text{C to} + 125^{\circ}\text{C} \\ -25^{\circ}\text{C to} + 85^{\circ}\text{C}$

Continuous

Storage Temperature Range -65°C to +150°C
Lead Temperature (Soldering, 10 sec.) 300°C

ESD rating to be determined.

DC Electrical Characteristics for LH0021/LH0021C (Note 4)

Parameter	Conditions	LH0021			LH0021C			Units
		Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	$\label{eq:RS} \begin{array}{l} R_{S} < 100\Omega, T_{C} = 25^{\circ}C \\ R_{S} < 100\Omega \end{array}$		1.0	3.0 5.0		3.0	6.0 7.5	mV mV
Voltage Drift with Temperature	$R_{S} < 100\Omega$		3	25		5	30	μV/°C
Offset Voltage Drift with Time			5			5		μV/week
Offset Voltage Change with Output Power			5	15		5	20	μV/W
Input Offset Current	$T_{\text{C}} = 25^{\circ}\text{C}$		30	100 300		50	200 500	nA nA
Offset Current Drift with Temperature			0.1	1.0		0.2	1.0	nA/°C
Offset Current Drift with Time			2			2		nA/week
Input Bias Current	$T_{\text{C}} = 25^{\circ}\text{C}$		100	300 1.0		200	500 1.0	nΑ μΑ
Input Resistance	$T_C = 25^{\circ}C$	0.3	1.0		0.3	1.0		$M\Omega$
Input Capacitance			3			3		pF
Common Mode Rejection Ratio	$R_S 100\Omega$, $\Delta V_{CM} = \pm 10V$	70	90		70	90		dB
Input Voltage Range	$V_S = \pm 15V$	±12			±12			٧
Power Supply Rejection Ratio	$R_S \le 100\Omega, \Delta V_S = \pm 10V$	80	96		70	90		dB
Voltage Gain	$V_S = \pm 15V, V_O = \pm 10V \\ R_L = 1 k\Omega, T_C = 25^{\circ}C \\ V_S = \pm 15V, V_O = \pm 10V$	100	200		100	200		V/mV
	$R_L = 100\Omega$	25			20			V/mV
Output Voltage Swing	$V_S = \pm 15V, R_L = 100\Omega$ $V_S = \pm 15V, R_L = 10\Omega, T_C = 25^{\circ}C$	±13.5 ±11.0	14 ±12		±13 ±10	±14 ±12		V V
Output Short Circuit Current	$V_S = \pm 15V, T_C = 25^{\circ}C, R_{SC} = 0.5\Omega$	0.8	1.2	1.6	0.8	1.2	1.6	Amps
Power Supply Current	$V_S = \pm 15V, V_{OUT} = 0$		2.5	3.5		3.0	4.0	mA
Power Consumption	$V_S = \pm 15V, V_{OUT} = 0$		75	105		90	120	mW

AC Electrical Characteristics for LH0021/LH0021C ($T_A = 25^{\circ}C$, $V_S = \pm 15V$, $C_C = 3000$ pF)

			Limits						
Parameter	Conditions	LH0021			LH0021C			Units	
		Min	Тур	Max	Min	Тур	Max		
Slew Rate	$A_V = +1, R_L = 100\Omega$	0.8	3.0		1.0	3.0		V/µs	
Power Bandwidth	$R_L = 100\Omega$		20			20		kHz	
Small Signal Transient Response			0.3	1.0		0.3	1.5	μs	
Small Signal Overshoot			5	20		10	30	%	
Settling Time (0.1%)	$\Delta V_{IN} = 10V$, $A_V = +1$		4			4		μs	
Overload Recovery Time			3			3		μs	
Harmonic Distortion	$f = 1 \text{ kHz}, P_{O} = 0.5W$		0.2			0.2		%	
Input Noise Voltage	$R_{\rm S}=50\Omega$, B.W. $=10$ Hz to 10 kHz		5			5		μV/rms	
Input Noise Current	B.W. = 10 Hz to 10 kHz		0.05			0.05		nA/rms	

DC Electrical Characteristics for LH0041/LH0041C (Note 4)

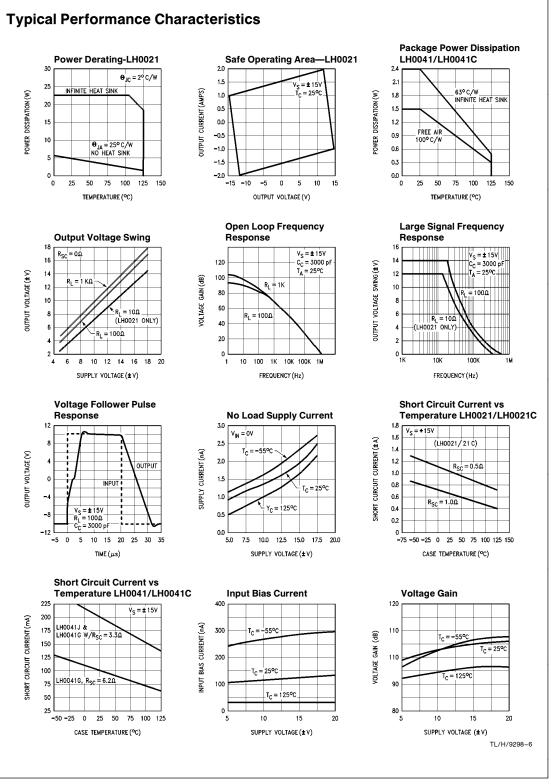
Parameter	Conditions	ı	LH0041		LH0041C			Units
		Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	$R_{S} < 100\Omega, T_{A} = 25^{\circ}C$ $R_{S} < 100\Omega$		1.0	3.0 5.0		3.0	6.0 7.5	mV mV
Voltage Drift with Temperature	$R_S < 100\Omega$		3			5		μV/°C
Offset Voltage Drift with Time			5			5		μV/week
Offset Voltage Change with Output Power			15			15		μV/W
Offset Voltage Adjustment Range	(Note 5)		20			20		mV
Input Offset Current	$T_A = 25^{\circ}C$		30	100 300		50	200 500	nA nA
Offset Current Drift with Temperature			0.1	1.0		0.2	1.0	nA/°C
Offset Current Drift with Time			2			2		nA/week
Input Bias Current	T _A = 25°C		100	300 1.0		200	500 1.0	nA μA
Input Resistance	$T_A = 25^{\circ}C$	0.3	1.0		0.3	1.0		MΩ
Input Capacitance			3			3		pF
Common Mode Rejection Ratio	$R_S 100\Omega$, $\Delta V_{CM} = \pm 10V$	70	90		70	90		dB
Input Voltage Range	$V_S = \pm 15V$	+12			+12			V
Power Supply Rejection Ratio	$R_S \le 100\Omega, \Delta V_S = \pm 10V$	80	96		70	90		dB
Voltage Gain	$ \begin{array}{c} V_S = \pm 15 V, V_O = \pm 10 V \\ R_L = 1 k \Omega, T_A = 25^{\circ} C \\ V_S = \pm 15 V, V_O = \pm 10 V \\ R_L = 100 \Omega \end{array} $	100 25	200		100	200		V/mV V/mV
Output Voltage Swing	$V_{S} = \pm 15V, R_{L} = 100\Omega$	±13	14		± 13	±14		V
Output Short Circuit Current	$V_S = \pm 15V, T_A = 25^{\circ}C$ (Note 6)		200	300	<u> </u>	200	300	mA
Power Supply Current	$V_{S} = \pm 15V, V_{OUT} = 0$		2.5	3.5		3.0	4.0	mA
Power Consumption	$V_S = \pm 15V, V_{OUT} = 0$		75	105		90	120	mW

AC Electrical Characteristics for LH0041/LH0041C ($T_A = 25^{\circ}C$, $V_S = \pm 15V$, $C_C = 3000$ pF)

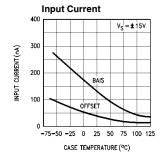
	Conditions							
Parameter		LH0041			LH0041C			Units
		Min	Тур	Max	Min	Тур	Max	
Slew Rate	$A_V = +1, R_L = 100\Omega$	1.5	3.0		1.0	3.0		V/μs
Power Bandwidth	$R_L = 100\Omega$		20			20		kHz
Small Signal Transient Response			0.3	1.0		0.3	1.5	μs
Small Signal Overshoot			5	20		10	30	%
Settling Time (0.1%)	$\Delta V_{IN} = 10V, A_V = +1$		4			4		μs
Overload Recovery Time			3			3		μs
Harmonic Distortion	$f = 1 \text{ kHz}, P_{O} = 0.5W$		0.2			0.2		%
Input Noise Voltage	$R_{\rm S}=50\Omega$, B.W. $=10$ Hz to 10 kHz		5			5		μV/rms
Input Noise Current	B.W. = 10 Hz to 10 kHz		0.05			0.05		nA/rms

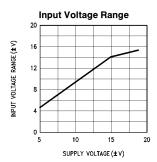
Note 1: Rating applies for supply voltages above \pm 15V. For supplies less than \pm 15V, rating is equal to supply voltage.

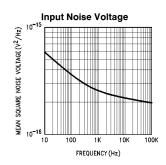
Note 2: Rating applies for LH0041G and LH0021K with RSC = 0Ω .

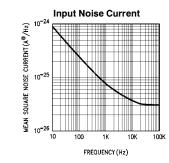

Note 3: Rating applies as long as package power rating is not exceeded.

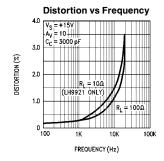
Note 4: Specifications apply for ± 5 V \leq V $_{S}$ ± 18 V, and -65°C \leq T $_{C}$ = \leq 125°C for LH0021K and LH0041G, and -25°C \leq T $_{C}$ \leq +85°C for LH0021CK, LH0041CG and LH0041CJ unless otherwise specified. Typical values are for 25°C only.

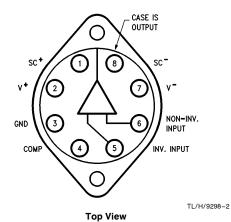

Note 5: TO-8 "G" packages only.

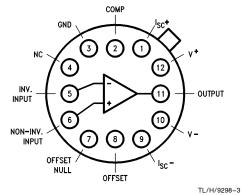

Note 6: Rating applies for "J" DIP package and for TO-8 "G" package with $R_{SC}\,=\,3.3$ ohms.


Note 7: See Typical Performance Characteristics.

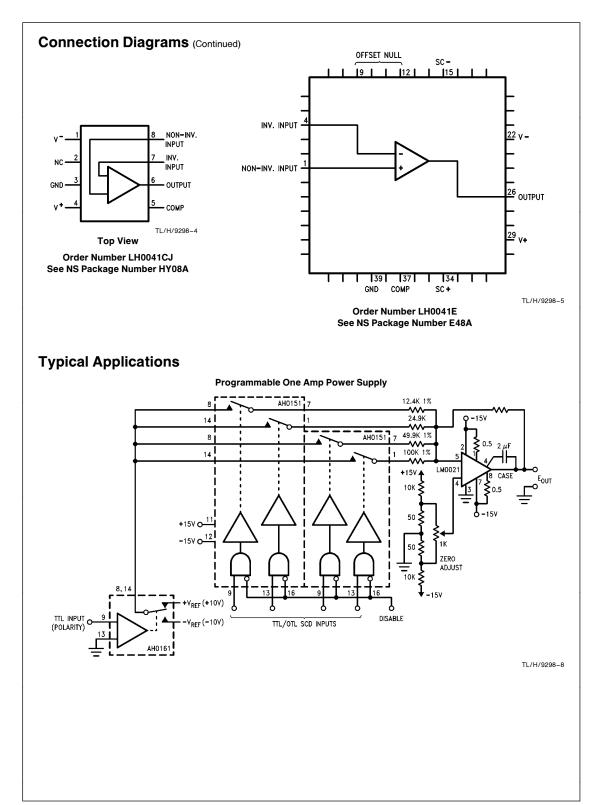



Typical Performance Characteristics (Continued)



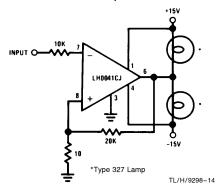


TL/H/9298-7

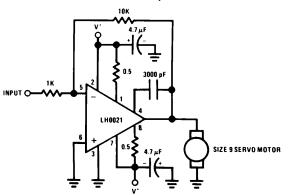

Connections Diagrams

Order Number LH0021K or LH0021CK See NS Package Number K08A

Order Number LH0041G or LH0041CG See NS Package Number H12B

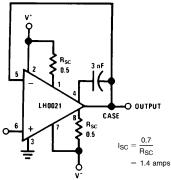


Typical Applications (Continued) 10W (rms) Audio Amplifier INPUT O <))201 LOAD TL/H/9298-9 **Dual Tracking One Amp Power Supply** +16 TO +36V O-2N3069 $V_{OUT_1} = \frac{6.2 (R2 + R1)}{R1}$ TL/H/9298-10

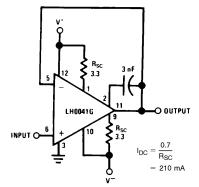

Typical Applications (Continued) **CRT Deflection Yoke Driver** DEFLECTION YOKE TL/H/9298-11 **Two Way Intercom** LH0041G TL/H/9298-12 Programmable High Current Source/Sink LH0041CJ O $I_{OUT} = \frac{V_{IN}}{R5} \left(\frac{R2}{R1} \right) + \frac{V_{OUT}}{R1 + R2} = 20 \text{ mA/V}$ TL/H/9298-13

Typical Applications (Continued)

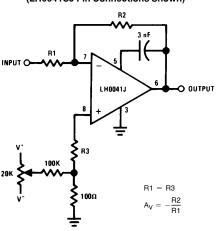
Power Comparator


DC Servo Amplifier

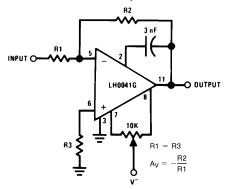
TL/H/9298-15


Auxiliary Circuits

LH0021 Unity Gain Circuit with Short Circuit Limiting


TL/H/9298-16

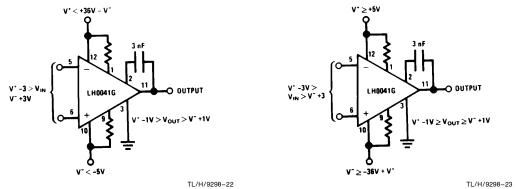
LH0041G Unity Gain with Short Circuit Limiting


TL/H/9298-17

LH0041/LH0021 Offset Voltage Null Circuit (LH0041CJ Pin Connections Shown)*

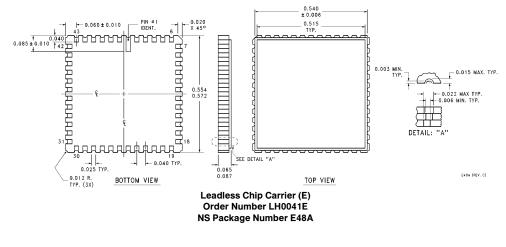
TL/H/9298-18

LH0041G Offset Voltage Null Circuit*

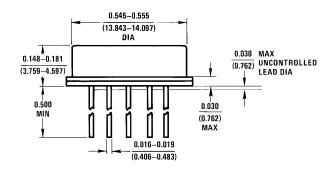


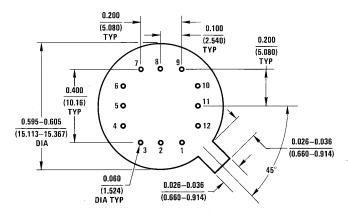
TL/H/9298-19

Auxiliary Circuits (Continued) **Operation from Single Supplies** POSITIVE TL/H/9298-20 NEGATIVE 2N2222 -10V ≤ V - ≤ -36V TL/H/9298-21

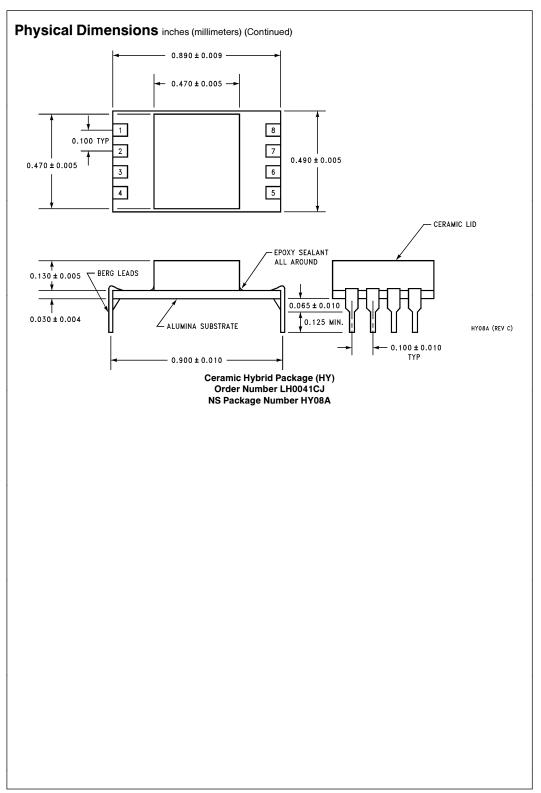

Auxiliary Circuits (Continued)

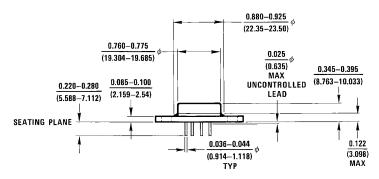
Operation from Non-Symmetrical Supplies

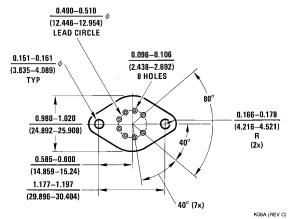

*For additional offset null circuit techniques see National Linear Applications Handbook.


Physical Dimensions inches (millimeters)

Leadless Chip Carrier (E) Order Number LH0041E NS Package Number E48A






H12B (REV A)

Metal Can Package (H) Order Number LH0041G or LH0041CG NS Package Number H12B

Physical Dimensions inches (millimeters) (Continued)

Metal Can Package (K) Order Number LH0021K or LH0021CK NS Package Number K08A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor

Europe Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408