xPC Target

For Use with Real-Time Workshop®

Modeling
Simulation

Implementation

User’s Guide \FJ\The MathWorks

Version 2

X LB

How to Contact The MathWorks:

www . mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com

Web
Newsgroup

Technical support
Product enhancement suggestions
Bug reports

doc@mathworks.com
service@mathworks.com
info@mathworks.com

Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

xPC Target User’s Guide
© COPYRIGHT 1999 - 2005 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: September 1999
November 2000
June 2001
September 2001
July 2002
June 2004
August 2004
October 2004
November 2004
March 2005

First printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1 (Release 11.1)

Revised for Version 1.1 (Release 12)
Revised for Version 1.2 (Release 12.1)
Revised for Version 1.3 (Release 12.1+)
Revised for Version 2 (Release 13)
Revised for Version 2.5 (Release 14)
Revised for Version 2.6 (Release 14+)
Revised for Version 2.6.1 (Release 14SP1)
Revised for Version 2.7 (Release 14SP1+)
Revised for Version 2.7.2 (Release 14SP2)

Contents

Target and Scope Objects

1]

Target Objects 1-2
What Is a Target Object?, 1-2
Scope Objects 1-3
What Is a Scope Object? 1-3

Targets and Scopes in the MATLAB Interface

2

Working with Target Objects 2-2
Creating Target Objects 2-2
Deleting Target Objects 2-3
Displaying Target Object Properties 2-3
Setting Target Object Properties from the Host PC 2-4
Getting the Value of a Target Object Property 2-5
Using the Method Syntax with Target Objects 2-6

Working with Scope Objects 2-7
Displaying Scope Object Properties for a Single Scope 2-7
Displaying Scope Object Properties for All Scopes 2-8
Setting the Value of a Scope Property 2-8
Getting the Value of a Scope Property 2-9
Using the Method Syntax with Scope Objects 2-10
Acquiring Signal Data with Scopes of Type File 2-11

Advanced Data Acquisition Topics 2-11

ii

Signals and Parameters

3|

Monitoring Signals 3-2
Signal Monitoring with xPC Target Explorer 3-2
Signal Monitoring with MATLAB 3-6
Monitoring Stateflow States 3-6

Signal Tracing i, 3-11
Signal Tracing with xPC Target Explorer 3-11
Signal Tracing with MATLAB 3-26
Signal Tracing with xPC Target Scope Blocks 3-33
Signal Tracing with a Web Browser 3-34

SignalLogging i, 3-36
Signal Logging with xPC Target Explorer 3-36
Signal Logging with MATLAB 3-38
Signal Logging with a Web Browser 3-42

Parameter Tuning and Inlining Parameters 3-43
Parameter Tuning with xPC Target Explorer 3-44
Parameter Tuning with MATLAB 3-47
Parameter Tuning with Simulink External Mode 3-50
Parameter Tuning with a Web Browser 3-53
Saving and Reloading Application Parameters with MATLAB 3-53
Inlined Parameters 3-56

Embedded Option
4

Introduction 4-2

xPC Target Embedded Option Modes 4-3
DOSLoader Mode Overvieweuiuinuennnn. 4-4
StandAlone Mode Overviewc.cciiuinenn. 4-6
Restrictions 4-8

Contents

Embedded Option Setup 4-9

Updating the xPC Target Environment 4-9
Creating a DOS System Disk 4-11
DOSLoader Target Setup 4-12
Updating Environment Properties and Creating a Boot Disk 4-12
Copying the Kernel to Flash Memory 4-14
Creating a Target Application for DOSLoader Mode 4-16
Stand-Alone Target Setup 4-17
Updating Environment Properties 4-17
Adding Target Scope Blocks to Stand-Alone Applications ... 4-18
Creating a Kernel/Target Application 4-21
Copying the Kernel/Target Application to Flash Disk 4-22

Software Environment and Demos

5]

Using Environment Properties and Functions 5-2
Getting a List of Environment Properties 5-2
Changing Environment Properties with xPC Target Explorer . 5-3
Changing Environment Properties with a Command-Line
Interface i 5-6

xPCTargetDemosc0iiiiiiuiinnnn.. 5-8
To Locate or Edit a Demo Script 5-8

iii

iv

Contents

Using the Target PC Command-Line Interface

6

Target PC Command-Line Interface 6-2
Using Target Application Methods on the Target PC 6-2
Manipulating Target Object Properties from the Target PC .. 6-3
Manipulating Scope Objects from the Target PC 6-4
Manipulating Scope Object Properties from the Target PC ... 6-6
Aliasing with Variable Commands on the Target PC 6-6

Working with Target PC Files and File Systems

7|

Introduction 7-2
FTP and File System Objects 7-4
Using xpctarget.ftp Objects 7-5
Accessing Files on a Specific Target PC 7-5
Listing the Contents of the Target PC Directory 7-6
Retrieving a File from the Target PC to the Host PC 7-7
Copying a File from the Host PC to the Target PC 7-8
Using xpctarget.fs Objects 7-9
Accessing File Systems from a Specific Target PC 7-10
Retrieving the Contents of a File from the Target PC to the
Host PC e 7-11
Removing a File from the Target PC 7-13
Getting a List of Open Files on the Target PC 7-14
Getting Information about a File on the Target PC 7-15
Getting Information about a Disk on the Target PC 7-15

Graphical User Interfaces

8 |

xPC Target Interface Blocks to Simulink Models 8-2
Simulink User Interface Model 8-2
Creating a Custom Graphical Interface 8-3
ToxPC Target Block 8-5
From xPC Target Block 8-6
Creating a Target Application Model 8-8
Marking Block Parameters 8-8
Marking Block Signals 8-10

xPC Target Web Browser Interface

9

Web Browser Interface 9-2
Connecting the Web Interface Through TCP/IP 9-2
Connecting the Web Interface Through RS-232............. 9-3
Usingthe MainPane 9-6
Changing WWW Propertiesciiiine... 9-9
Viewing Signals with a Web Browser 9-10
Viewing Parameters with a Web Browser 9-11
Changing Access Levels to the Web Browser 9-11

Interrupts Versus Polling

10

PollingMode i, 10-2
xPC Target Kernel Polling Mode 10-2
Interrupt Mode 10-2
PollingMode i 10-4
Setting the Polling Mode 10-6
Restrictions Introduced by Polling Mode 10-9
Controlling the Target Application 10-12

Polling Mode Performance 10-13

vi

Contents

xPC Target and Fortran

Introduction 11-2
Simulink Demos Directory 11-2
Prerequisites 11-3
Steps to Incorporate Fortran in Simulink for xPC Target 11-3

Step-by-Step Example of Fortran and xPC Target 11-5
Creating an xPC Target Atmosphere Model for Fortran 11-5
Compiling Fortran Files 11-7
Creating a C-MEX Wrapper S-Function 11-9
Compiling and Linking the Wrapper S-Function 11-9
Validating the Fortran Code and Wrapper S-Function 11-10
Preparing the Model for the xPC Target Application Build . 11-11
Building and Running the xPC Target Application 11-13

Troubleshooting

General Troubleshooting Hintsand Tips 12-2

Installation, Configuration, and Test Troubleshooting .. 12-7

Advanced Troubleshooting 12-14

Target PC Command-Line Interface Reference

Target PCCommands 13-2
Target Object Methods 13-3
Target Object Property Commands 13-3
Scope Object Methods 13-5
Scope Object Property Commands 13-8
Aliasing with Variable Commands 13-10

Function Reference

14

Functions — Categorical List 14-2
Software Environment 14-2
GUIL .. 14-3
st .t 14-3
Target Objectst 14-3
Scope Objects i 14-5
File and File System Objects 14-6

Functions — Alphabetical List 14-8

Index

vii

viil Contents

Target and Scope Objects

Before you can work with xPC Target target and scope objects, you should understand the concept of
target and scope objects.

Target Objects (p. 1-2) Description of target objects
Scope Objects (p. 1-3) Description of scope objects

1 Target and Scope Objects

Target Objects

xPC Target uses a target object (of class xpctarget.xpc) to represent the
target kernel and your target application. Use target object functions to run
and control real-time applications on the target PC with scope objects to collect
signal data.

See Chapter 14, “Function Reference,” for a reference of the target functions.

What Is a Target Object?
An understanding of the target object properties and methods will help you to
control and test your application on the target PC.

A target object on the host PC represents the interface to a target application
and the kernel on the target PC. You use target objects to run and control the
target application.

When you change a target object property on the host PC, information is
exchanged with the target PC and the target application.

To create a target object,

¢ Build a target application. xPC Target creates a target object during the
build process.

e Use the target object constructor function xpc. In the MATLAB® window,
type tg = xpctarget.xpc.

Target objects are of class xpctarget.xpc. A target object has associated
properties and methods specific to that object.

1-2

Scope Obijects

Scope Obijects

xPC Target uses scope objects to represent scopes on the target PC. Use scope
object functions to view and collect signal data.

See Chapter 14, “Function Reference,” for a reference of the scope functions.

What Is a Scope Object?

xPC Target uses scopes and scope objects as an alternative to using Simulink®
scopes and external mode. A scope can exist as part of a Simulink model system
or outside a model system.

® A scope that is part of a Simulink model system is a scope block. You add an
xPC Target scope block to the model, build an application from that model,
and download that application to the target PC.

® A scope that is outside a model is not a scope block. For example, if you create
a scope with the addscope method, that scope is not part of a model system.
You add this scope to the model after the model has been downloaded and
initialized.

This difference affects when and how the scope executes to acquire data.

Scope blocks inherit sample times. A scope block in the root model or a normal
subsystem executes at the sample time of its input signals. A scope block in a
conditionally executed (triggered/enabled) subsystem executes whenever the
containing subsystem executes. Note that in the latter case, the scope might
acquire samples at irregular intervals.

A scope that is not part of a model always executes at the base sample time of
the model. Thus, it might acquire repeated samples. For example, if the model
base sample time is 0.001, and you add to the scope a signal whose sample time
is 0.005, the scope will acquire five identical samples for this signal, and then
the next five identical samples, and so on.

Understanding the structure of scope objects will help you to use the MATLAB
command-line interface to view and collect signal data. The topics in this
section are

Refer to Chapter 1, “Target and Scope Objects,” for a description of how to use
these objects, properties, and methods.

1-3

1 Target and Scope Objects

14

A scope object on the host PC represents a scope on the target PC. You use
scope objects to observe the signals from your target application during a
real-time run or analyze the data after the run is finished.

To create a scope object,

® Add an xPC Target scope block to your Simulink model, build the model to

create a scope, and then use the target object method getscope to create a
scope object.

e Use the target object method addscope to create a scope, create a scope
object, and assign the scope properties to the scope object.

A scope object has associated properties and methods specific to that object.

The following section describes scope object types.

Scope Object Types

You can create scopes of type target, host, or file. Upon creation, xPC Target
assigns the appropriate scope object data type for the scope type:

® xpctarget.xpcsctg for scopes of type target

® xpctarget.xpcschost for scopes of type host

® xpctarget.xpcfs for scopes of type file

® xpctarget.xpcsc encompasses the object properties common to all the scope
object data types. xPC Target creates this object if you create multiple scopes
of different types for one model and combine those scopes, for example, into
a scope vector.

Each scope object type has a group of object properties particular to that object
type.

The xpcsctg scope object of type target has the following object properties:

® Grid

® \Mode

® Ylimit

Scope Obijects

The xpcschost scope object of type host has the following object properties:

® Data
® StartTime
® Time

The xpcfs scope object of type file has the following object properties:

® AutoRestart

® Filename

® Mode

® StartTime

® WriteSize

The xpcsc scope object has the following object properties. The other scope
objects have these properties in common:
® Application

® Decimation

® NumPrePostSamples

® NumSamples

® Scopeld

® Status

® TriggerlLevel

® TriggerMode

® TriggerSample

® TriggerScope

® TriggerSignal

® TriggerSlope

® Type

See the scope object function get (scope object) on page 14-28 for a
description of these object properties.

1-5

1 Target and Scope Objects

Targets and Scopes in the
MATLAB Interface

You can work with xPC Target target and scope objects through the MATLAB interface MATLAB
Command Window), the target PC command line, a Web browser, or an xPC Target API. This
chapter describes how to use the MATLAB interface to work with the target and scope objects in the
following topics.

Working with Target Objects (p. 2-2) Use the MATLAB Command Window to change
properties and use methods to control the target PC and
your target application

Working with Scope Objects (p. 2-7) Use the MATLAB Command Window to change
properties and use methods for signal logging and signal
tracing

See Chapter 6, “Using the Target PC Command-Line Interface,” for a description of the target PC
command-line interface.

2 Targets and Scopes in the MATLAB Interface

Working with Target Objects

This topic describes how to work with target objects using target object
functions.

® “Creating Target Objects” on page 2-2

¢ “Deleting Target Objects” on page 2-3

® “Displaying Target Object Properties” on page 2-3

® “Setting Target Object Properties from the Host PC” on page 2-4

® “Getting the Value of a Target Object Property” on page 2-5

® “Using the Method Syntax with Target Objects” on page 2-6

See Chapter 14, “Function Reference,” for a reference of the target object
functions.

Creating Target Objects

To create a target object,

® Build a target application. xPC Target creates a target object during the
build process.

® To create a single target object, or to create multiple target objects in your
system, use the target object constructor function xpc (see xpctarget.xpc on
page 14-116) as follows. For example, the following creates a target object
connected to the host through an RS-232 connection. In the MATLAB
window, type

tg = xpctarget.xpc('rs232', 'COM1', '115200')

The resulting target object is tg.

Working with Target Objects

To check a connection between a host and a target, use the target function
targetping. For example,

tg.targetping

Note To ensure that you always know which target PC is associated with
your target object, you should always use this method to create target objects.

¢ To create a single target object, or to create the first of many targets in your
system, use the target object constructor function xpctarget.xpc as follows.
In the MATLAB Command Window, type

tg = xpctarget.xpc

The resulting target object is tg.

Note Ifyou choose to use this syntax to create a target object, you should use
xPC Target Explorer to configure your target PC. This ensures that
command-line interactions know the correct target PC to work with.

Deleting Target Objects

To delete a target object, use the target object destructor function delete. In
the MATLAB window, type

tg.delete

If there are any scopes, file system, or FTP objects still associated with the
target, this function removes all those scope objects as well.

Displaying Target Object Properties
You might want to list the target object properties to monitor a target

application. The properties include the execution time and the average task
execution time.

After you build a target application and target object from a Simulink model,
you can list the target object properties. This procedure uses the default target
object name tg as an example.

2-3

2 Targets and Scopes in the MATLAB Interface

2-4

1 In the MATLAB window, type
tg
The current target application properties are uploaded to the host PC, and

MATLAB displays a list of the target object properties with the updated
values.

Note that the target object properties for TimeLog, StatelLog, OutputLog, and
TETLog are not updated at this time.
2 Type
+tg
The Status property changes from stopped to running, and the log
properties change to Acquiring.

For a list of target object properties with a description, see the target object
function get (target object) on page 14-37

Setting Target Object Properties from the Host PC

You can change a target object property by using the xPC Target set method
or the dot notation on the host PC.

With xPC Target you can use either a function syntax or an object property
syntax to change the target object properties. The syntax set (target_object,
property name, new_property value) can be replaced by

target_object.property_name = new_property_value

For example, to change the stop time mode for the target object tg,
1 In the MATLAB window, type

tg.stoptime = 1000
2 Alternatively, you can type

set(tg, 'stoptime', 1000)

When you change a target object property, the new property value is
downloaded to the target PC. The xPC Target kernel then receives the
information and changes the behavior of the target application.

Working with Target Objects

To get a list of the writable properties, type set(target_object). The build
process assigns the default name of the target object to tg.

Getting the Value of a Target Object Property

You can list a property value in the MATLAB window or assign that value to a
MATLAB variable. With xPC Target you can use either a function syntax or an
object property syntax.

The syntax get(target _object, property_name) can be replaced by

target_object.property_name

For example, to access the start time,

1 In the MATLAB window, type

endrun = tg.stoptime
2 Alternatively, you can type
endrun = get(tg, 'stoptime') or tg.get('stoptime’)

To get a list of readable properties, type target_object. Without assignment
to a variable, the property values are listed in the MATLAB window.

Signals are not target object properties. To get the value of the Integratori
signal from the model xpcosc,

1 In the MATLAB window, type
outputvalue= getsignal (tg,0)

where 0 is the signal index.

2 Alternatively, you could type
tg.getsignal(0)

Note Method names are case sensitive. You must type the entire name.
Property names are not case sensitive. You do not need to type the entire
name as long as the characters you do type are unique for the property.

2-5

2 Targets and Scopes in the MATLAB Interface

Using the Method Syntax with Target Objects

Use the method syntax to run a target object method. The syntax
method _name(target object, argument_list) can be replaced with

target_object.method name(argument_list)

Unlike properties, for which partial but unambiguous names are permitted,
you must enter method names in full, and in lowercase. For example, to add a
scope of type target with a scope index of 1,

1 In the MATLAB window, type
tg.addscope('target',1)

2 Alternatively, you can type
addscope(tg, 'target', 1)

Working with Scope Obijects

Working with Scope Objects

This topic describes how to work with scope objects using scope object
functions.

¢ “Displaying Scope Object Properties for a Single Scope” on page 2-7
® “Displaying Scope Object Properties for All Scopes” on page 2-8

® “Setting the Value of a Scope Property” on page 2-8

® “Getting the Value of a Scope Property” on page 2-9

¢ “Using the Method Syntax with Scope Objects” on page 2-10

® “Acquiring Signal Data with Scopes of Type File” on page 2-11

¢ “Acquiring Gap-Free Data Using Two Scopes” on page 2-16

® “Acquiring Gap-Free Data Using Two Scopes” on page 2-16

See Chapter 14, “Function Reference,” for a reference of the scope object
functions.

Displaying Scope Object Properties for a Single
Scope

To list the properties of a single scope object, sc1,

1 In the MATLAB window, type
sc1 = getscope(tg,1) or sc1 = tg.getscope(1)

MATLAB creates the scope object sc1 from a previously created scope.

2 Type
sci

The current scope properties are uploaded to the host PC, and then
MATLAB displays a list of the scope object properties with the updated
values. Because sc1 is a vector with a single element, you could also type
sci1(1) orsci([1]).

Note Only scopes with type host store data in the properties
scope_object.Time and scope_object.Data.

2 Targets and Scopes in the MATLAB Interface

2-8

For a list of target object properties with a description, see the target function
get (target object) on page 14-37.

Displaying Scope Object Properties for All Scopes
To list the properties of all scope objects associated with the target object tg,

1 In the MATLAB window, type
getscope(tg) or tg.getscope
MATLAB displays a list of all scope objects associated with the target object.

2 Alternatively, type
allscopes = getscope(tg)

or type

allscopes = tg.getscope
The current scope properties are uploaded to the host PC, and then
MATLAB displays a list of all the scope object properties with the updated

values. To list some of the scopes, use the vector index. For example, to list
the first and third scopes, type allscopes([1,3]).

For a list of target object properties with a description, see the target function
get (target object) on page 14-37

Setting the Value of a Scope Property

With xPC Target you can use either a function syntax or an object property
syntax. The syntax set(scope_object, property name,
new_property_value) can be replaced by

scope_object(index_vector).property_name = new_property value
For example, to change the trigger mode for the scope object sc1,

1 In the MATLAB window, type

sc1.triggermode = 'signal'

Working with Scope Obijects

2 Alternatively, you can type

set(scl, 'triggermode', 'signal')
or type
scl.set('triggermode', 'signal')

Note that you cannot use dot notation to set vector object properties. To assign
properties to a vector of scopes, use the set method. For example, assuming you
have a variable sc12 for two scopes, 1 and 2, set the NumSamples property of
these scopes to 300:

1 In the MATLAB window, type

set(sc12, 'NumSamples',300)

To get a list of the writable properties, type set (scope_object).

Note Method names are case sensitive. You must type the entire name.
Property names are not case sensitive. You do not need to type the entire
name as long as the characters you do type are unique for the property.

Getting the Value of a Scope Property

You can list a property value in the MATLAB window or assign that value to a
MATLAB variable. With xPC Target you can use either a function syntax or an
object property syntax.

The syntax get (scope_object vector, property _name) can be replaced by

scope_object_vector(index_vector).property_name
For example, to assign the start time from the scope object sc1,

1 In the MATLAB window, type

beginrun = sci1.starttime

2-9

2 Targets and Scopes in the MATLAB Interface

2-10

2 Alternatively, you can type

beginrun = get(sci, 'starttime')

or type

scl.get('starttime')

Note that you cannot use dot notation to get the values of vector object
properties. To get properties of a vector of scopes, use the get method. For
example, assume you have two scopes, 1 and 2, assigned to the variable sc12.

To get the value of NumSamples for these scopes, in the MATLAB window, type
get(sc12, 'NumSamples')

You get a result like the following:

ans =
[300]
[300]

To get a list of readable properties, type scope_object. The property values are
listed in the MATLAB window.

Note Method names are case sensitive. You must type the entire name.
Property names are not case sensitive. You do not need to type the entire
name as long as the characters you do type are unique for the property.

Using the Method Syntax with Scope Objects

Use the method syntax to run a scope object method. The syntax
method_name (scope_object_vector, argument_list) can be replaced with
® scope_object.method_name(argument_list)

® scope_object_vector(index_vector).method_name(argument_list)
Unlike properties, for which partial but unambiguous names are permitted,

method names you must enter in full, and in lowercase. For example, to add
signals to the first scope in a vector of all scopes,

Working with Scope Obijects

1 In the MATLAB window, type
allscopes(1).addsignal([0,1])

2 Alternatively, you can type
addsignal(allscopes(1), [0,1])

Acquiring Signal Data with Scopes of Type File

You can acquire signal data into a file on the target PC. To do so, you add a
scope of type file to the application. After you build an application and
download it to the target PC, you can add a scope of type file to that
application.

For example, to add a scope of type file named sc to the application, and to
add signal 4 to that scope,

1 In the MATLAB window, type
sc=tg.addscope('file"')

xPC Target creates a scope of type file for the application.

2 Type
sc.addsignal(4)

xPC Target adds signal 4 to the scope of type file. When you start the scope
and application, the scope saves the signal data for signal 4 to a file, by
default named C:\data.dat.

See “Scope of Type File” on page 3-34 in Chapter 3, “Signals and Parameters,”
for a description of signal tracing with scopes of type file.

Advanced Data Acquisition Topics

The moment that an xPC Target scope begins to acquire data is user
configurable. You can have xPC Target scopes acquire data right away, or
define triggers for scopes such that the xPC Target scopes wait until they are
triggered to acquire data. You can configure xPC Target scopes to start
acquiring data when the following scope trigger conditions are met. These are
known as trigger modes.

2-11

2 Targets and Scopes in the MATLAB Interface

2-12

® Freerun — Starts to acquire data as soon as the scope is started (default)

® Software — Starts to acquire data in response to a user request. You
generate a user request when you call the scope method trigger or the scope
function xPCScSoftwareTrigger

e Signal — Starts to acquire data when a particular signal has crossed a
preset level

® Scope — Starts to acquire data based on when another (triggering) scope
starts

You can use several properties to further refine when a scope acquires data.
For example, if you set a scope to trigger on a signal (Signal trigger mode), you
can configure the scope to specify the following:

® The signal to trigger the scope (required)

e The trigger level that the signal must cross to trigger the scope to start
acquiring data

® Whether the scope should trigger on a rising signal, falling signal, or either
one

In the following topics, the trigger point is the sample during which the scope
trigger condition is satisfied. For signal triggering, the trigger point is the
sample during which the trigger signal passes through the trigger level. At the
trigger point, the scope acquires the first sample. By default, scopes start
acquiring data from the trigger point onwards. You can modify this behavior
using the pre- and posttriggering.

® Pre-triggering — Starts to acquire data N moments before a trigger occurs
® Post-triggering — Starts to acquire data N moments after a trigger occurs
The NumPrePostSamples scope property controls the pre- and posttriggering

operation. This property specifies the number of samples to be collected before
or after a trigger event.

e If NumPrePostSamples is a negative number, the scope is in pretriggering
mode, where it starts collecting samples before the trigger event.

e If NumPrePostSamples is a positive number, the scope is in a posttriggering
mode, where it starts collecting samples after the trigger event.

The following topics describe two examples of acquiring data:

Working with Scope Obijects

® “Triggering One Scope with Another Scope to Acquire Data” on page 2-13 —
Describes a configuration of one scope to trigger another using the concept of
pre- and posttriggering

® “Acquiring Gap-Free Data Using Two Scopes” on page 2-16 — Describes how
to apply the concept of triggering one scope with another to acquire gap-free
data

Triggering One Scope with Another Scope to Acquire Data

This section describes the concept of triggering one scope with another to
acquire data. The description uses actual scope objects and properties to
describe triggers.

The ability to have one scope trigger another, and to delay retrieving data from
the second after a trigger event on the first, is most useful when data

acquisition for the second scope is triggered after data acquisition for the first
scope is complete. In the following explanation, Scope 2 is triggered by Scope 1.

* Assume two scopes objects are configured as a vector with the command
sc = tg.addscope('host', [1 2]);

¢ For Scope 1, set the following values:
= sc(1).Scopeld = 1
= sc(1).NumSamples = N
= sc1.NumPrePostSamples = P

2-13

2 Targets and Scopes in the MATLAB Interface

® For Scope 2, set the following values:

= sc(2).Scopeld = 2

= sC(2).TriggerMode = 'Scope'’
sc(2).TriggerScope =1

= sc(2).TriggerSample = range 0 to (N + P - 1)

In the figures below, TP is the trigger point or sample where a trigger event
occurs. Scope 1 begins acquiring data as described.

In the simplest case, where P = 0, Scope 1 acquires data right away.

“Pretriggering (P<0)” on page 2-14 illustrates the behavior if P, the value of
NumPrePostSamples, is negative. In this case, Scope 1 starts acquiring data |P|
samples before TP. Scope 2 begins to acquire data only after TP occurs.

Pretriggering (P < 0)
First Sample End of
Acquired N Aoqmlsmon
TP
L. PL (N + P) |
Trigger
Event

Pretriggering (P<0)
“Posttriggering (P>0)” on page 2-15, illustrates the behavior if P, the value of

NumPrePostSamples, is positive. In this case, Scope 1 starts acquiring data |P|
samples after TP occurs.

2-14

Working with Scope Obijects

Posttriggering (P > 0)
End of
TP Acquisition
| (N+P) |
wm !

K First Sample
Acquired

Tri r
Event

Posttriggering (P>0)

Scope 1 triggers Scope 2 after the trigger event occurs. The following describes
some of the ways you can trigger Scope 2:

® sc(2).TriggerSample = 0 — Causes Scope 2 to be triggered when Scope 1
is triggered. TP for both scopes as at the same sample.

® sc(2).TriggerSample = n > 0 — Causes TP for Scope 2 to be n samples after
TP for Scope 1. Note that setting sc (2) . TriggerSample to a value larger than
(N + P - 1) does not cause an error; it implies that Scope 2 will never trigger,
since Scope 1 will never acquire more than (N + P - 1) samples after TP.

® sc(2).TriggerSample = 0 < n < (N + P) — Enables you to obtain some of
the functionality that is available with pre- or posttriggering. For example,
if you have the following Scope 1 and Scope 2 settings,

= Scope 1 has sc(1).NumPrePostSamples = 0 (no pre- or posttriggering)
= Scope 2 has sc(2).TriggerSample = 10
= Scope 2 has sc(2) .NumPrePostSample = 0

The behavior displayed by Scope 2 is equivalent to having
sc(2).TriggerSample = 0 and sc(2).NumPrePostSamples = 10.

® sc(2).TriggerSample = -1 — Causes Scope 2 to start acquiring data from
the sample after Scope 1 stops acquiring.

2-15

2 Targets and Scopes in the MATLAB Interface

2-16

Note The difference between setting TriggerSample = (N + P - 1), where
N and P are the parameters of the triggering scope (Scope 1) and
TriggerSample = -1 isthat in the former case, the first sample of Scope 2 will
be at the same time as the last sample of Scope 1, whereas in the latter, the
first sample of Scope 2 will be one sample after the last sample of Scope 1.
This means that in the former case both scopes acquire simultaneously for one
sample, and in the latter they will never simultaneously acquire.

Acquiring Gap-Free Data Using Two Scopes

With two scopes, you can acquire gap-free data. Gap-free data is data that two
scopes acquire consecutively, with no overlap. The first scope acquires data up
to N, then stops. The second scope begins to acquire data at N+1. This section
provides guidelines for setting up two scopes for gap-free data. This is
functionality that you cannot achieve through pre- or posttriggering.

® Set the TriggerSample property for both scopes to -1. For example,

sc1.TriggerSample = -1
sc2.TriggerSample = -1

® Set the TriggerScope property for each scope so that each is triggered by the
other. For example,
sc1.TriggerScope=2
sc2.TriggerScope=1

® Set the NumSamples property for each scope. For example,

sc1.NumSamples=500
sc2.NumSamples=500

® Set the TriggerMode property for one of the scopes to 'Software'. You must
do this to start the data acquisition. Otherwise, each scope waits for the other
to finish acquiring data, and never starts. In “Acquisition of Gap-Free Data”
on page 2-17, the TriggerMode property of Scope 1 is set to 'Software'. This
allows Scope 1 to be software triggered to acquire data when it receives the
command sci1.trigger.

® Both the scopes receive exactly the same signals, in other words, the signals
you want to retrieve.

Working with Scope Obijects

“Acquisition of Gap-Free Data” on page 2-17, illustrates how the scopes trigger

one another.

Saftware Trigger
[initialization)

Scope 1
MNumSamples=200
TriggerScope=2
Triggersample= -1

Trigoer at
Acquisition End

Scope 2
MumSamples=500
TriggerScope=1
Triggersample= -1

Acquisition of Gap-Free Data

The following code is a typical example of how you can retrieve gap-free data.
You can type this code into an m file and run that file for a downloaded target
application. This example assumes that the communication speed and number
of samples are fast enough to acquire the full data set before the next
acquisition cycle is due to start. You can also use more than two scopes to
implement a triple- or quadruple-buffering scheme instead of the

double-buffering one illustrated here.

% Assumes that model is built and loaded on target.

tg = xpctarget.xpc;
sc = tg.addscope('target’,
addsignal(sc,[0 1]);

Trigoer at
Acquisition End

% [0 1] are the signals of interest; add to both

% Default value for TriggerSample is 0, need to change it.
‘TriggerSample', -1)
set(sc, 'TriggerMode', 'Scope');

set(sc, 'NumSamples', 500,

sc(1).TriggerScope = 2;
sc(2).TriggerScope = 1;
start(sc);
start(tg);

2-17

2 Targets and Scopes in the MATLAB Interface

sc(1).trigger;

% Start things off by triggering scope 1

data = zeros(0, 2);

t = [1;

scNum = 1;

% We will look at scope 1 first

% Use some appropriate condition instead of an infinite loop

while(1)
% loop until the scope has finished
while ~strcmp(sc(scNum).Status, 'Finished'), end
data(end + 1 : end + 500, :) = sc(scNum).Data;
t(end + 1 : end + 500) = sc(scNum).Time;
start(sc(scNum));

% Restart the scope
scNum = 3 - scNum;

% Switch to the next scope

end

2-18

Signals and Parameters

Changing parameters in your target application while it is running in real time, and checking the
results by viewing signal data, are two important prototyping tasks. xPC Target includes
command-line and graphical user interfaces to complete these tasks. This chapter includes the

following sections:

Monitoring Signals (p. 3-2)

Signal Tracing (p. 3-11)

Signal Logging (p. 3-36)

Parameter Tuning and Inlining
Parameters (p. 3-43)

Acquire signal data while running a target application
without time information

Acquire and visualize signals while running a target
application in real time

Acquire signal data while running a target application,
and after the run, transfer the data to the host PC for
analysis

Change parameters in your target application while it is
running in real time

3 Signals and Parameters

3-2

Monitoring Signals

Signal monitoring is the process for acquiring signal data during a real-time
run without time information. The advantage with signal monitoring is that
there is no additional load on the real-time tasks. Use signal monitoring to
acquire signal data without creating scopes that run on the target PC.

In addition to signal monitoring, xPC Target enables you to monitor
test-pointed Stateflow® states through the xPC Target Explorer and MATLAB
command-line interfaces. You designate data or a state in a Stateflow diagram
as a test point. This makes it observable during execution. See the Stateflow
and Stateflow Coder user’s guide documentation for details. You can work with
Stateflow states as you do xPC Target signals, such as monitoring or plotting
Stateflow states. (See “Monitoring Stateflow States” on page 3-6 for details.)

After you start running a target application, you can use signal monitoring to
get signal data.

This section has the following topics:
® “Signal Monitoring with xPC Target Explorer” on page 3-2

® “Signal Monitoring with MATLAB” on page 3-6
® “Monitoring Stateflow States” on page 3-6

Signal Monitoring with xPC Target Explorer

This procedure uses the model xpcosc.mdl as an example, and assumes you
created and downloaded the target application to the target PC. For
meaningful values, the target application should be running.

1 If the xPC Target Explorer is not started, start it now. In xPC Target
Explorer, select the node of the running target application in which you are
interested. For example, xpcosc.

The target PC Target Application Properties pane appears.

Monitoring Signals

) #PC Target Explorer

File Target

Application Tools Help

2 In the Solver pane, change the Stop time parameter to inf (infinity).

=10l x|

o X 5> u|H| &

| *PC Target Hiearachy

Host PC Root
% Compiler(z] Configuration
=[] DLMIs) D:vwarkhspce
f14.dm
zf_car.dim
test.dim
wpc_osc3.dim
wpc_osch.dim
wpoosc.dim
wpoosc. dim
wpoosc_gaps.dim
wpoosc_vector.dir
=[G TargetPC1

[% Configuration

[- & Communication
& Settings
-------- & Appearance
File System
- |ocal disk b
e |ocal disk dih
HpCOST
ﬁ Model Hierarchy
Ea #PC Scopes

1 | H

=]

TargetPC1 Target Application Properties

Mumber of zignals:

Mumber of param...
Mumber of scopes:

Froperty | Walue
Target name: TargetPC1
Application name: =poosc
Stop time: Inf
Sample time: 0.00025
Execution time: 0.00000
CPU OverLoad: hohe
Minimum TET: 9939939
M awimurn TET: 1]

b awimum logging ... 25000

M aximum logging ... 0

7
7
1

— Solver

Stop time: Iinf

Sample fime: [0,00025

— Logging

Log mode: I Time-equidistant

Hp

™ Time: |t0ut

| Dutout: |y0ut

I State: |xout

CITET: et

Send to MATLAB Work space |

Refresh Enabled

3 To get the list of signals in the target application, expand the target

application node, then expand the Model Hierarchy node under the target

application node.

The model hierarchy expands to show the Simulink objects (signals and
parameters) in the Simulink model.

3 Signals and Parameters

3-4

= TargetPC1
]88 Configuration

""" o local disk et :l Target PC file system drives

Application node

Parameters

------- = Gain]
------- = Gainl

------- = Gand .
....... ~£ Integrator SIgn(l|S
------- ~= Integrator]

------- ~E Signal Generator
------- ~-E Sum

[+ #PC Scopes

[]-‘---- TargetPC2

The Model Hierarchy node can have up to three types of nodes: subsystems
(&) (including their signals and parameters), parameters (a), and signals
(E!). Only xPC Target tunable parameters and signals of the application, as
represented in the Simulink model, appear in the Model Hierarchy node.
This example currently has only parameters and signals.

Note that if you make changes (such as adding an xPC Target scope) to the
model associated with the downloaded application, then rebuild that model
and download it again to the target PC, you should reconnect to the target

PC to refresh the Model Hierarchy node.

Monitoring Signals

4 To get the value of a signal, select the signal in the Model Hierarchy node.

The value of the signal is shown in the right pane. For example,

) ®PC Target Explorer 10l =|
File Target Application Tools Help ~
¥
X8> = @ W
| *PC Target Hiearachy

Signal name: Sum [1 x 1]

TargetPC1 -] 1
g Configuration 1[45470.1323
File Syztem

----- S |ocal disk o
S |ocal disk et
HpCOST

(S ﬁ Model Hierarchy
1 Gain

1 Gainl

........ 1 Integrator

1 Integratort

=1 Signal Generator
....... ~£ Gain

£

- TargetPC2
4]

Refresh Enabled

5 Right-click the target application and select Start.

The application starts running.

3-5

3 Signals and Parameters

Signal Monitoring with MATLAB
This procedure uses the model xpc_osc3.md1 as an example, and assumes you
created and downloaded the target application to the target PC. It also
assumes that you have assigned tg to the appropriate target PC.
1 To get a list of signals, type either
set(tg, 'ShowSignals', 'On') or tg.ShowSignals='0On'
The latter command causes the MATLAB window to display a list of the

target object properties for the available signals. For example, the signals
for the model xpc_osc3.md1l are shown below.

ShowSignals = On

Signals = INDEX VALUE BLOCK NAME
0 0.000000 Transfer Fcn
1 0.000000 Signal Generator

2 To get the value of a signal, use the getsignal method. In the MATLAB
Command Window, type

tg.getsignal(1)

where 1 is the signal index. MATLAB displays the value of signal 1.

ans=
3.731

See also “Signal Tracing with MATLAB” on page 3-26.

Monitoring Stateflow States

This procedure uses the model sf_car.mdl as an example. It describes one way
to test-point Stateflow states for monitoring.

1 In the MATLAB window, type

sf_car

2 In the Simulink window, and from the Simulation menu, click
Configuration Parameters.

The Configuration Parameters dialog box is displayed for the model.

3-6

Monitoring Signals

Click the Real-Time Workshop® node.

The Real-Time Workshop pane opens.

To build a basic target application, in the Target selection section, click the
Browse button at the RTW system target file list. Click xpctarget.tlc,

and the

As necessary, you can click the xPC Target options node and continue to

n click OK.

make changes.

When y

ou are done, click OK.

In the sf_car model, double-click the shift_logic chart.

The shift logic chart is displayed.

) Stateflow (chart) sf_car/shift_logic - |EI Iil
File Edit Simulation ‘iew Tools Add Help a
24| SHE| iR BE) @ = (e EBRAO| 7
T ————— 5
" gear_slala P P i T
[-
ol
.E%_:J ~ DO DOWN DOWN
car|| o
Tor 5 ;ﬁringl:DHL?ﬁ'H:
I ' [spead = down_th]
i
I [5p=ed = up_th]
; o [spesd - down_th] 3 o
5
E alerT&WaIT tick) altarTWRIT tick)
! [sp=ed <= down_th] [sp=ed == up_th]
A '~\ {gear_slale. DOV} {gear_slala. UF}
0% o -
4Kl
|Heady

3-7

3 Signals and Parameters

8 In the chart, select Tools -> Explore.
The Model Explorer is displayed.

9 In the Model Explorer, expand sf_car.

10 Expand gear_state, then select first.

11 In the rightmost pane, State first, select the Test point check box. This
creates a test point for the first state.

12 Click Apply.

13 Build and download the sf_car target application to the target PC.
You can now view the states with the xPC Target Explorer or MATLAB.

Monitoring Stateflow States with xPC Target Explorer

This topic assumes that you have already test-pointed Stateflow states (see
“Monitoring Stateflow States” on page 3-6 if you have not).

1 If the xPC Target Explorer is not yet started, start it now and connect it to
the target PC that has the downloaded sf_car target application.

2 To view the test point in the xPC Target Explorer, expand the Model

Hierarchy node and navigate to shift_logic. The test point
gear_state.first appears like any other signal in the hierarchy, as follows:

3-8

Monitoring Signals

= TargetPC1

- % Configuration

i & Communication
£ Settings

& Appearance

g File System

T shift_logic
E L] gear_statefirst
e shift_logicAp

3 Choose the state as you do a signal to monitor.

Monitoring Stateflow States with MATLAB
This topic assumes that you have already test-pointed Stateflow states (see
“Monitoring Stateflow States” on page 3-6 if you have not).

1 To get a list of signals in the MATLAB Command Window, type
tg=xpc

2 To display the signals in the target application, type either

set(tg, 'ShowSignals', 'On'); tgor tg.ShowSignals='0On'

This causes the MATLAB window to display a list of the target object
properties for the available signals.

3-9

3 Signals and Parameters

For test pointed Stateflow states, the state appears in the BLOCK NAME
column like any signal. For example, if you set a test point for the first
state of gear_stateinthe shift logic chart ofthe sf_car model. The state

of interest is first. This state appears as follows in the list of signals in
MATLAB:

shift_logic:gear_state.first

shift_logic is the path to the Stateflow chart and gear_state.firstisthe
path to the specific state.

3-10

Signal Tracing

Signal Tracing

Signal tracing is the process of acquiring and visualizing signals while running
a target application. In its most basic sense, signal tracing allows you to
acquire signal data and visualize it on the target PC or upload the signal data
and visualize it on the host PC while the target application is running. This
section includes the following topics:

¢ “Signal Tracing with xPC Target Explorer” on page 3-11 — Use the xPC
Target Explorer to create and run scopes that are displayed on the host PC.

¢ “Signal Tracing with MATLAB” on page 3-26 — Use the MATLAB Command
Window to create scopes and scope objects.

® “Signal Tracing with xPC Target Scope Blocks” on page 3-33 — Use scopes
of type host to trace signal data triggered by an event while your target
application is running.

¢ “Signal Tracing with a Web Browser” on page 3-34 — Use Microsoft Explorer
or Netscape Navigator to view signals.

Signal tracing differs from signal logging. With signal logging you can only look
at signals after a run is finished and the log of the entire run is available. For
information on signal logging, see “Signal Logging” on page 3-36.

Signal Tracing with xPC Target Explorer

The procedures in this topic use the model xpcosc.mdl as an example, and
assume you have created, downloaded, and started the target application to the
target PC.

® “Creating Scopes” on page 3-12 — Create scopes on the host PC and target
PC to visualize the data.

® “Adding Signals to Scopes” on page 3-16 — Add signals to the scopes and
start the scopes.

® “Stopping Scopes” on page 3-20 — Stop the scopes.

You can add or remove signals from scopes of type target or host while the
scope is either stopped or running. For scopes of type file, you must stop the
scope first before adding or removing signals.

3-11

3 Signals and Parameters

Creating Scopes

1 In xPC Target Explorer, ensure that your xpcosc application is still
running.

2 To get the list of signals in the target application, expand the Model
Hierarchy node under the target application.

The model hierarchy expands to show the elements in the Simulink model.

= Talgeﬁ[ﬁ
= % Configuratian

-8 Communication
-8 Settings

-8 Appearance
=] g File: Spstem

. Ese local disk oy
e local disk e
HpCOST

[«PC Scopes
B TargetPC2

3 To get the list of scope types you can have in the target application, expand
the xPC Scopes node below the application node.

The xPC Scopes node expands to show the possible scope types a target
application can have.

3-12

Signal Tracing

....... £ Gain

....... £ Gainl

....... £ Gain?

------- ~ Integrator

....... ~E Integratarl

------- ~& Signal Generator
....... £ Sum

= #PC Scopes

Host Scope(s)
Target Scope(z]
File Scope(z]

4 To create a scope to display on the target PC, right-click the Target Scopes
node under the xPC Scopes node.

A context menu appears. This lists the actions you can perform on target PC
scopes. For example, within the current context, you can create a target PC
scope.

Host Scope(s)
File: Scop MSCDLI

5 Select Add Target Scope.

= #PC Scopes

A scope node appears under Target Scopes. In this example, the new scope
is labeled Scope 1.

= [a #PC Scopes
= % Host Scopels)
Scope: 2
@ Target S Cope|s] m— New scope of type Iurgel

You can add other scopes, including those of type host and file, up to ten
each.

3-13

3 Signals and Parameters

3-14

6 To create a scope to be displayed on the host PC, right-click the Host Scopes

node under the xPC Scopes node.

A context menu appears. This lists the actions you can perform on host PC
scopes. For example, within the current context, you can create a host PC
scope.

E| ----- «PC Scopes |

% md Host Scope
5 @ S Yiew Scopes
“[5y File Scope(s)]

Select Add Host Scope.

A scope node appears under Host Scopes. In this example, the new scope is
labeled as Scope 2.

To visualize the host scope on the host PC, right-click Host Scopes from the
XPC Scopes node.

A drop-down list appears.

= ’ #PC Scopes | ||

® Add Host Scope
] View Scopes
. Delete al

=

Select View Scopes.

The xPC Target Host Scope Viewer appears. Note that the signals you add
to the scope will appear at the top right of the viewer.

Signal Tracing

-..i XPC Target Host Scope Yiewer: TargetPC1 - |E| |5|
N

File Edit Wiew Insert Tools Desktop Window Help

D& kRa®e € 08| 50

10 To list the properties of the scope object Scope 2, select the xPC Target
Explorer tab to return to that window, and left-click Scope 2. (Note that you
can configure the docking view using the MATLAB docking feature.)

The scope properties are shown in the rightmost pane.

11 To create a scope to acquire signal data into a file on the target PC file
system, in the xPC Target Hierarchy pane, select the target PC drive and
subdirectory in which you create the file for the signal data. For example,
select local disk c:\ tocreate a file in the top-level directory of the C drive.

=G TargetPC1
B % Configuration
o Communication
e Settings
Lo 8 Appearance
(= Q File System
..... gl
----- = |ocal disk o

3-15

3 Signals and Parameters

3-16

12 Right-click the File Scopes node under the xPC Scopes node.

A scope node appears under File Scopes. In this example, the new scope is
labeled Scope 3.

= #PC Scopes

= % Host Scopels)

[Scope: 2

@ Target Scope(z]
: 1

You next task is to add signals to the scopes. The following procedure assumes
that you have added scopes to the target PC and host PC.

Adding Signals to Scopes

1 In the xPC Target Explorer window, add signals to the target PC scope,
Scope 1. For example, to add signals Integrator1 and Signal Generator,
right-click each signal and select Add to Scopes. From the Add to Scopes
list, select Scope 1. (Note that you can also drag the signal to the scope to
add the signal to that scope.)

The Scope 1 node is shown with a plus sign.

= «PC Scopes
= % Host Scopels)
H Mo Soope: 2
Target Scope(z]
----- @ Scope: 1
File Scope(z]

2 Expand the Scope 1 node.

The Scope 1 signals are displayed.

= «PC Scopes

= % Host Scopels)
Scope: 2

= @ Target Scope(z]
= @ Scope: 1
~E Signal Generator

e |nbegrator]
[y File Scope(s)

Signal Tracing

3 Start the scope. For example, to start Scope 1, right-click it and select Start.

=g #PC Scopes
=18 Host Scopels)
2 Scope: 2
= Target Scope(z]

= o

i w
q_}am,
. Delete

The target screen plots the signals after collecting each data package.
During this time you can observe the behavior of the signals while the scope

is running.

<) Real-Time xPC Target Spy

HpCosc
S9MEB

RT, single
t x y tet
9999

8. 88825
8.875e-006
stopped

Signal Generator
Integratorl

1, set to state ' Interrupted’
TET: ©.00008E8 at time 8.000758
TET: ©.000012 at time B8.0816758

! execution started (sample time!:

1, set to state ' Interrupted’

! execution stopped at 19.818258

1, set to state 'Interrupted’
TET: ©.00008E at time 8.0022508
TET: 8.000014 at time B8.806508

8. 88825a)

4 Add signals to the host PC scope. For example, to add signals Integrator
and Signal Generator, right-click each signal and select Add to Scopes.
From the Add to Scopes list, select Scope 2.

The Scope 2 node is shown with a plus sign.

3-17

3 Signals and Parameters

5 Expand the Scope 2 node.
The Scope 2 signals are displayed.

E #PLC Scopes
B % Host Scopels]
- % Scope: 2
2 Signal Generator
L Integrator]

6 Start the scope. For example, to start the scope Scope 2, right-click Scope 2
in the Host Scopes node of the xPC Target Explorer and select Start.

The xPC Target Host Scope Viewer window plots the signals after
collecting each data package. During this time you can observe the behavior
of the signals while the scope is running.

3-18

Signal Tracing

- '.i XPC Target Host Scope Yiewer: TargetPC1 ;Iglll
N

File Edit Wiew Insert Tools Desktop Window Help

DedsE k| RaQaO® € 08 0O

1

| L

7 Add signals to the scope of type file. For example, to add signals
Integrator1i and Signal Generator, right-click each signal and select Add
to Scopes. From the Add to Scopes list, select Scope 3.

The Scope 3 node is shown with a plus sign.
8 Expand the Scope 3 node.
The Scope 3 signals are displayed.

E--BY File Scopels)
E--BY Scope: 3
------- ~ Integrator]
f— Signal Generator

3-19

3 Signals and Parameters

3-20

9 To specify a filename for the data file, select the scope of type file. In the
right pane, enter a name in the Filename parameter. While in the
parameter field, press Enter to save the filename.

Note that there is no name initially assigned. If you do not specify a
filename, then after you start the scope, xPC Target assigns a name for the
target PC file to acquire the signal data. This name typically consists of the
scope object name, Scopeld, and the beginning letters of the first signal
added to the scope.

10 Start the scope. For example, to start the scope Scope 3, right-click Scope 3
in the File Scopes node of the xPC Target Explorer and select Start.

For scopes of type file, xPC Target saves data to a file on the target PC flash
disk.

You next task is to stop the scopes. The following procedure assumes that you
have started scopes.

Stopping Scopes
1 Stop the scopes. For example, to stop Scope 1, right-click it and select Stop.

The signals shown on the target PC stop updating while the target
application continues running, and the target PC displays the following
message.

Scope: 1, set to state 'interrupted'

2 Stop the target application. For example, to stop the target application
xpcosc, right-click xpcosc and select Stop.

The target application on the target PC stops running, and the target PC
displays the following messages:

System: execution stopped
minimal TET: 0.0000006 at time 0.001250
maximal TET: 0.0000013 at time 75.405500

Note that if you stop the target application before stopping the scope, the
scope stops too.

Signal Tracing

If you have scopes of type file, you can copy the file that contains the signal
data from the target PC to the host PC. See “Copying Files to the Host PC” on
page 3-24.

Software Triggering Scopes

You can set up a scope such that only a user can trigger the scope. This section
assumes that you have added a scope to your target application (see “Creating
Scopes” on page 3-12) and that you have added signals to that scope (“Adding
Signals to Scopes” on page 3-16).

1 Inthe xPC Target Explorer window, select the scope that you want to trigger
by software. For example, select Scope 1.

The properties pane for that scope is displayed.

2 From the Trigger mode list, select Software.

3-21

3 Signals and Parameters

3-22

) #PC Target Explorer

File Target Application Tools

Help

=lofx|

o X E|> u || W

*PC Target Hiearachy

E tPC1 - -
algg N =l Fraperty | value — Scope dat —
onfiguration T - T ol pe data
File Spstem arg_et narne: arget| _
X Application nam... spcosc Humber of samples: |250
S |ocal disk o o 1
o local disk db Type: Target Decimation: |1—
¥pCosc Status: Interupted
ﬁ Model Higrarchy Start tirne:)
Number of samp... 250 Mumber of pre/post zamples:
Decimation: 1 0
Mumber of Pre/.. 0
Trigger mode: FreeRun . .
Trigger level: iz IW-‘
! Trigger slope: Either — Signal tiggering————————————————
1 Signal Gener: Trigger scope: 1 5
Gain Trigger zample: 0 Trigger level: IU
Gainl .
GainZ Trigger slope: Either =
Integrator
In.tegrator‘l — Scope tiggering
Signal Gener:
Sum Trigger scope: |1
= Ea #PC Scopes .
o % Host Scopels Trigger sample: ID
[% Scope: |
— Scope dizplay
Display mode: I Redraw [Graphicalﬂ
*r-awis limits: [prin,pmax]
c jiool
(== % File Scope(z]
&I Scope — IV Enable Grid
L4 k1| b

TargetPC1 Scope: 1

Refresh Enabled

5 Select Trigger.

3 Start the scope and target application.

4 Right-click the scope to be triggered. For example, select Scope 1.

Signal Tracing

Configuring the Host Scope Viewer

You can customize your host scope viewer. This section assumes that you have
added a host scope to your target application, started the host scope viewer,
and added signals Integrator1 and Signal Generator (see “Creating Scopes”
on page 3-12 and “Adding Signals to Scopes” on page 3-16). These viewer
settings are per scope.

® In the xPC Target Host Scope Viewer, right-click anywhere in the axis area
of the viewer.

A context menu is displayed. This context menu contains options for the
following:

= View Mode — Select Graphical for a graphical display of the data. Select
Numerical for a numeric representation of the data.

= Legends — Select and deselect this option to toggle the display of the
signals legend in the top right of the viewer.

= Grid — Select and deselect this option to toggle the display of grid lines in
the viewer.

= Y-Axis — Enter the desired values. In the Enter Y maximum limit and
Enter Y minimum limit text boxes, enter the range for the y-axis in the
Scope window.

= Export — Select the data to export. Select Export Variable Names to
export scope data names. In the Data Variable Name and Time Variable
Name text boxes, enter the names of the MATLAB variables to save data
from a trace. Click the OK button. The default name for the data variable
is application_name_scn_data, and the default name for the time
variable is application_name_scn_time where n is the scope number.
Select Export Scope Data to export scope data to MATLAB.

3-23

3 Signals and Parameters

Copying Files to the Host PC

From xPC Target Explorer, you can download target PC files from the target
PC to the host PC. This is most useful when you want to examine the data from
the scope data file.

1 In xPC Target Explorer, expand the target PC node associated with the
target PC file system you want to access. For example, expand TargetPC1.

2 Under TargetPC1, expand the File System node.

Nodes representing the drives on the target PC are displayed.

&
=] Configuration
£ Communication
: & Settings
F— i) Appearance
EI ------ Q File System

----- e |ocal disk ot
----- s local disk dh

- HPCOSC

3 Expand the node of the drive that contains the file you want. For example,
local disk: c:\.

4 Select the directory that contains the file you want. For example, select the
node labeled local disk: c:\.

The contents of that directory are displayed in the right pane.

5 In the right pane, right-click the file you want to copy to the host PC. For
example, right-click SC1INTEG.DAT.

A context-sensitive menu is displayed.

6 Select Save Target As.

3-24

Signal Tracing

| *PC Target Hiearachy TargetPC1 File System: o
i % Carnpiler[z] Configuration ;I Marme Size :l
& f@ D:L::[:Si]: Driwfarkapcild_m PAGEFILE .SV 402653.2 KE
B .m‘%ggmﬁgwamn JDEINS™1 HTM 23KB
-------- £ Communication NTLDR' 144 KB
........ @ Settings NTODETECT.COM 347 kB
,,,,,,,, & Appesrance JOESECKDS 20kKE
£1-E, Fie Systen BOOT.INI 0.2KE
e local disk b JDESEC-DDS 0.1kKE
; JOEAUTH <DA 20KE
CONFIG.SYS noke
AUTOEXEC BAT noKE
JDEAUTH.DDA 01kKBE
=] JDEAPP XDP E1KE
JDEAPP.DDP 34KB
- PROGRA™2 =] JDEMOD %DM 5.1 KB
{3 RECYCLED JDEMOD.DDM 18KE
[#- local dizk d
. NEKE
e PO S — | |
- TargetPC2 . -
] | | Delete » |

| Refresh Enabled

A file Save As dialog is displayed.

7 Choose the directory to contain the signal data file. If you want, you can also
save the file under a different name.

xPC Target Explorer copies the contents of the selected file, for example
SC1INTEG.DAT, to the selected directory.

You can examine the contents of the signal data file. See “Retrieving a File from
the Target PC to the Host PC” on page 7-7 in Chapter 7, “Working with Target
PC Files and File Systems.”

Deleting Files from the Target PC

From xPC Target Explorer on the host PC, you can delete the scope data file
on the target PC file system. Use the same procedure as described in “Copying
Files to the Host PC” on page 3-24, but select Delete instead of Save Target
As. xPC Target Explorer removes the selected file from the target PC file
system.

3-25

3 Signals and Parameters

Signal Tracing with MATLAB

Creating a scope object allows you to select and view signals using the scope
methods. This section describes how to trace signals using xPC Target
functions instead of using the xPC Target graphical user interface. This
procedure assumes that you have assigned tg to the appropriate target PC.

After you create and download the target application, you can view output
signals.

Using the MATLAB interface, you can trace signals with

® Host or target scopes (see “Signal Tracing with MATLAB and Scopes of Type
Target” on page 3-26 for a description of signal tracing with target scopes)

® Scopes of type file (see “Signal Tracing with MATLAB and Scopes of Type
File” on page 3-29)

You must stop the scope before adding or removing signals from the scope.

Signal Tracing with MATLAB and Scopes of Type Target

This procedure uses the Simulink model xpcosc.mdl as an example, and
assumes you have built the target application for this model. It describes how
to trace signals with target scopes.

1 Start running your target application. Type any of

+tg or tg.start or start(tg)

The target PC displays the following message.
System: execution started (sample time: 0.0000250)

2 To get a list of signals, type either
set(tg, 'ShowSignals', 'on')

or

tg.ShowSignals="'on'

The MATLAB window displays a list of the target object properties for the
available signals. For example, the signals for the model xpcosc.mdl are as
follows:

3-26

Signal Tracing

ShowSignals = on

Signals = INDEX VALUE BLOCK NAME
0 0.000000 Integratori
1 0.000000 Signal Generator
2 0.000000 Gain
3 0.000000 Integrator
4 0.000000 Gain1
5 0.000000 Gain2
6 0.000000 Sum

For more information, see “Signal Monitoring with MATLAB” on page 3-6.
Create a scope to be displayed on the target PC. For example, to create a
scope with an identifier of 1 and a scope object name of sc1, type

sc1=tg.addscope('target', 1) or sci=addscope(tg, 'target', 1)
List the properties of the scope object. For example, to list the properties of
the scope object sc1, type

sci

The MATLAB window displays a list of the scope object properties. Notice
that the scope properties StartTime, Time, and Data are not accessible with
a scope of type target.

xPC Scope Object

Application = Xpcosc
Scopeld =1

Status = Interrupted
Type = Target
NumSamples = 250
NumPrePostSamples =0
Decimation =1
TriggerMode = FreeRun
TriggerSignal = -1
TriggerLevel = 0.000000
TriggerSlope = Either
TriggerScope =1
TriggerSample = -1

Mode = Redraw (Graphical)

3-27

3 Signals and Parameters

YLimit = Auto
Grid = On
Signals = no Signals defined

5 Add signals to the scope object. For example, to add Integrator1 and
Signal Generator, type

sc1.addsignal ([0,1]) or addsignal(sci1,[0,1])

The target PC displays the following messages.
Scope: 1, signal 0 added
Scope: 1, signal 1 added

After you add signals to a scope object, the signals are not shown on the
target screen until you start the scope.
6 Start the scope. For example, to start the scope sc1, type either
+sc1 or sc.start or start(sci)
The target screen plots the signals after collecting each data package.
During this time you can observe the behavior of the signals while the scope
is running.
7 Stop the scope. Type either
sc1 or sci1.stop or stop(sct)
The signals shown on the target PC stop updating while the target

application continues running, and the target PC displays the following
message.

Scope: 1, set to state 'interrupted'

8 Stop the target application. In the MATLAB window, type either
-tg or tg.stop or stop(tg)
The target application on the target PC stops running, and the target PC
displays the following messages.

System: execution stopped
minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

3-28

Signal Tracing

Signal Tracing with MATLAB and Scopes of Type File

This procedure uses the Simulink model xpcosc.mdl as an example, and
assumes you have built the target application for this model. It also assumes
that you have a serial communication connection. This topic describes how to
trace signals with scopes of type file.

Note The signal data file can quickly increase in size. You should examine
the file size between runs to gauge the growth rate for the file. If the signal
data file grows beyond the available space on the disk, the signal data might
be corrupted.

1 Create an xPC Target application that works with scopes of type file. Type
tg=xpctarget.xpc('rs232', 'COM1', '115200')
2 To get a list of signals, type either
set(tg, 'ShowSignals', 'on')
or
tg.ShowSignals='on'
The MATLAB window displays a list of the target object properties for the

available signals. For example, the signals for the model xpcosc.mdl are
shown below.

ShowSignals = on

Signals = INDEX VALUE BLOCK NAME
0 0.000000 Integratori
1 0.000000 Signal Generator
2 0.000000 Gain
3 0.000000 Integrator
4 0.000000 Gain1
5 0.000000 Gain2
6 0.000000 Sum

For more information, see “Signal Monitoring with MATLAB” on page 3-6.

3-29

3 Signals and Parameters

3-30

3 Start running your target application. Type

+tg or tg.start or start(tg)

The target PC displays the following message:
System: execution started (sample time: 0.0000250)
Create a scope to be displayed on the target PC. For example, to create a
scope with an identifier of 2 and a scope object name of sc2, type
sc2=tg.addscope('file', 2) or sc2=addscope(tg, 'file', 2)
List the properties of the scope object. For example, to list the properties of
the scope object sc2, type
sc2
The MATLAB window displays a list of the scope object properties. Notice

that the scope properties StartTime, Time, and Data are not accessible with
a scope of type target.

XPC Scope Object

Application = Xpcosc
Scopeld =2

Status = Interrupted
Type = File
NumSamples = 250
NumPrePostSamples =0
Decimation =1
TriggerMode = FreeRun
TriggerScope =2
TriggerSample =0
TriggerSignal = -1
TriggerLevel = 0.000000
TriggerSlope = Either
Signals = no Signals defined
StartTime = -1.000000
FileName = unset

Signal Tracing

Mode = Lazy
WriteSize = 512
AutoRestart = off

Note that there is no name initially assigned to FileName. After you start the
scope, xPC Target assigns a name for the file to acquire the signal data. This
name typically consists of the scope object name, Scopeld, and the beginning
letters of the first signal added to the scope.

Add signals to the scope object. For example, to add Integratori and
Signal Generator, type
sc2.addsignal ([0,1]) or addsignal(sc2,[0,1])

The target PC displays the following messages.
Scope: 2, signal 0 added
Scope: 2, signal 1 added

After you add signals to a scope object, the scope of type file does not
acquire signals until you start the scope.
Start the scope. For example, to start the scope sc2, type

+sC2 or sc2.start or start(sc2)

The target PC displays the following message.
FileSys:File c:\sc2Integ.dat opened

The MATLAB window displays a list of the scope object properties. Notice

that FileName is assigned a default filename to contain the signal data for
the scope of type file. This name typically consists of the scope object name,
Scopeld, and the beginning letters of the first signal added to the scope.

Application = Xpcosc
Scopeld =2
Status = Pre-Acquiring
Type = File
NumSamples = 250
NumPrePostSamples =0
Decimation =1
TriggerMode = FreeRun

3-31

3 Signals and Parameters

3-32

TriggerScope
TriggerSample
TriggerSignal
TriggerLevel
TriggerSlope
StartTime
Signals

StartTime
FileName
Mode
WriteSize
AutoRestart

8 Stop the scope. Type

2
0
0

0.000000

Either

NaN

0 : Integratori

1 : Signal Generator
NaN

c:\sc2Integ.dat

Lazy

512

off

-sCc2 or sc2.stop or stop(sc2)

The signals shown on the target PC stop updating while the target
application continues running, and the target PC displays the following

message.

FileSys:File c:\sc2Integ.data closed
Scope: 2, set to state 'Interrupted’

9 Stop the target application. In the MATLAB window, type

-tg or tg.stop or stop(tg)

The target application on the target PC stops running, and the target PC
displays messages similar to the following.

System: execution stopped

minimal TET: 0.00006 at time 0.004250
maximal TET: 0.000037 at time 14.255250

To access the contents of the signal data file that the xPC Target scope of type
file creates, use the xPC Target file system object (xpctarget.fs) from the
host PC MATLAB window. To view or examine the signal data, you can use the
readxpcfile utility in conjunction with the plot function. For further details
on the xpctarget.fs file system object and the readxpcfile utility, see
Chapter 7, “Working with Target PC Files and File Systems.”

Signal Tracing

Signal Tracing with xPC Target Scope Blocks

Use scopes of type host to log signal data triggered by an event while your
target application is running. This topic describes how to use the three scope
block types.

Note xPC Target supports ten scopes of type target and host, and eight
scopes of type file, for a maximum of 28 scopes.

Scope of Type Host

For a scope of type host, the scope acquires the first N samples into a buffer.
You can retrieve this buffer into the scope object property sc.Data. The scope
then stops and waits for you to manually restart the scope.

The number of samples N to log after triggering an event is equal to the value
you entered in the Number of Samples parameter.

Select the type of event in the Block Parameters: Scope (xPC Target) dialog box
by setting Trigger Mode to Signal Triggering, Software Triggering, or
Scope Triggering.

Scope of Type Target

For a scope of type target, logged data (sc.Data, sc.Time, and sc.StartTime)
is not accessible over the command-line interface on the host PC. This is
because the scope object status (sc.Status) is never set to Finished. Once the
scope completes one data cycle (time to collect the number of samples), the
scope engine automatically restarts the scope. If you create a scope object, for
example, sc = getscopes(tg,1) for a scope of type target, and then try to get
the logged data by typing sc.Data, you get an error message:

Scope # 1 is of type 'Target'! Property Data is not accessible.

If you want the same data for the same signals on the host PC while the data
is displayed on the target PC, you need to define a second scope object with type
host. Then you need to synchronize the acquisitions of the two scope objects by
setting TriggerMode for the second scope to 'Scope'.

3-33

3 Signals and Parameters

Scope of Type File

For a scope of type file, the scope acquires data and writes it to the file named
in the FileName parameter in blocks of size WriteSize. The scope acquires the
first N samples into the memory buffer. This memory buffer is of length
Number of Samples. The memory buffer writes data to the file in WriteSize
chunks. If the AutoRestart check box is selected, the scope then starts over
again, overwriting the memory buffer. The additional data is appended to the
end of the existing file. If the AutoRestart box is not selected, the scope collects
data only up to the number of samples, and then stops. The number of samples
N to log after triggering an event is equal to the value you entered in the
Number of Samples parameter. If you stop, then start the scope again, the
data in the file is overwritten with the new data.

Select the type of event in the Block Parameters: Scope (xPC Target) dialog box
by setting Trigger Mode to Signal Triggering, Software Triggering, or
Scope Triggering.

Signal Tracing with a Web Browser

The Web browser interface allows you to visualize data using a graphical user
interface.

After you connect a Web browser to the target PC you can use the scopes page
to add, remove, and control scopes on the target PC:

1 In the left frame, click the Scopes button.
The browser loads the Scopes List pane into the right frame.
2 Click the Add Scope button.

A scope of type target is created and displayed on the target PC. The
Scopes pane displays a list of all the scopes present. You can add a new
scope, remove existing scopes, and control all aspects of a scope from this

page.

To create a scope of type host, use the drop-down list next to the Add Scope
button to select Host. This item is set to Target by default.

3-34

Signal Tracing

3 Click the Edit button.

The scope editing pane opens. From this pane, you can edit the properties of
any scope, and control the scope.

4 Click the Add Signals button.
The browser displays an Add New Signals list.

5 Select the check boxes next to the signal names, and then click the Apply
button.

A Remove Existing Signals list is added above the Add New Signals list.

You do not have to stop a scope to make changes. If necessary, the Web
interface stops the scope automatically and then restarts it when the changes
are made. It does not restart the scope if the state was originally stopped.

When a host scope is stopped (Scope State is set to Interrupted) or finishes
one cycle of acquisition (Scope State is set to Finished), a button called Get
Data appears on the page. If you click this button, the scope data is retrieved
in comma separated variable (CSV) format. The signals in the scope are spread
across columns, and each row corresponds to one sample of acquisition. The
first column always corresponds to the time each sample was acquired.

Note If Scope State is set to Interrupted, the scope was stopped before it
could complete a full cycle of acquisition. Even in this case, the number of
rows in the CSV data will correspond to a full cycle. The last few rows (for
which data was not acquired) will be set to 0.

3-35

3 Signals and Parameters

3-36

Signal Logging

Signal logging is the process for acquiring signal data during a real-time run,
stopping the target application, and then transferring the data to the host PC
for analysis. You can plot and analyze the data, and later save it to a disk. xPC
Target signal logging samples at the base sample time. If you have a model
with multiple sample rates, add xPC Target scopes to the model to ensure that
signals are sampled at their appropriate sample rates.

Note xPC Target does not support logging data with decimation.

This section includes the following topics:

¢ “Signal Logging with xPC Target Explorer” on page 3-36 — Use an xPC
Target Scope block in your Simulink model to log signal data triggered by an
event.

® “Signal Logging with MATLAB” on page 3-38 — Use Outport blocks in your
Simulink model to log data to a target object in the MATLAB workspace.

® “Signal Logging with a Web Browser” on page 3-42 — Use Microsoft Internet
Explorer or Netscape Navigator to log data to a text file.

Signal Logging with xPC Target Explorer

You plot the outputs and states of your target application to observe the
behavior of your model, or to determine the behavior when you vary the input
signals and model parameters.

This procedure uses a model named xpc_osc4.mdl as an example and assumes
you have created a target application and downloaded it to the target PC. The
xpc_osc4.mdl is the same as xpc_osc3.md1l with the xPC Target Scope block
removed. See “xPC Target Application” in Chapter 3 in the xPC Target getting
started documentation.

Note To use the xPC Target Explorer for signal logging, you need to add an
Outport block to your Simulink model, and you need to activate logging on the
Data Import/Export pane in the Configuration Parameters dialog.

Signal logging

example, xpc_osc4.

The right pane displays the target application properties dialog for

XpC_0sc4.

logging. For example, select Output and TET.

) #PC Target Explorer

File Taraet Application

Tools Help

1 In xPC Target Explorer, select the downloaded target application node. For

2 In the Logging pane, select the boxes of the signals you are interested in

=10l x|

o X E|> u|H| &

| *PC Target Hiearachy

Host PC Root
% Compiler(z] Configuratior
=[] DLMIs): D:\Workhwpchr

=]

2 wpoosc_vector.dim
= TargetPC1

% Configuration

- 8 Communication
8 Settings

S |ocal disk et
#pc_oscd

ﬁ Model Hierarchy
[a #PC Scopes

1 | ©

TargetPC1 Target Apj

plication Properties

— Solver

Froperty | Walue
Target name: TargetPC1
Application name: xpc_ozcd
Stop time: 10000.00000
Sample time: 0.00025
Execution time: 0.00000
CPU OverLoad: hohe
Minimum TET: 9939939
M awimurn TET: 1]

b awimum logging ... 16EEE

M aximum logging ... 0

Mumber of signals: 2

Mumber of param... 2

Mumber of scopes: 0

Stop time: |1 0000

Sample fime: [0,00025

— Logging

Log mode: I Time-equidistant

™ Time: |t0ut

¥ Outout: |y0ut

I State: |xout

M TET: et

Send to MATLAB Work space

Refresh Enabled

select the xpc_osc4 target application, then select Start.

select the xpc_osc4 target application, then select Stop.

3 Start the target application. For example, in the Target Hierarchy pane,

4 Stop the target application. For example, in the Target Hierarchy pane,

3-37

3 Signals and Parameters

5 Send the selected logged data to the MATLAB workspace. In the target
application properties dialog for xpc_osc4, go to the Logging pane and click
the Send to MATLAB Workspace button.

In the MATLAB desktop, the Workspace pane displays the logged data.

«):MATLAE

File Edit “iew @Graphics Debug Desktop Window Help
[Eq| 4 BB o “|ﬁﬁ|?|CurremDirec

Shorteuts [#] How to &dd [#] What's Mew

': ET L §| B ‘ - Stack:IEia... YI
Mame £ | Walue | Clazz

Hiet <16666x1 doukle> double

5]ty =1x1 xpctarget. xp... xpctarget. xpe
A yout <16666x2 double> double

You can examine or otherwise manipulate the data.

Signal Logging with MATLAB

You plot the outputs and states of your target application to observe the
behavior of your model, or to determine the behavior when you vary the input
signals and model parameters.

Time, states, and outputs — Logging the output signals is possible only if you
add Outport blocks to your Simulink model before the build process, and in the
Configuration Parameters Data Import/Export node, select the Save to
workspace check boxes. See “Entering Parameters for the Outport Blocks” in
Chapter 3 of the xPC Target getting started documentation.

Task execution time — Plotting the task execution time is possible only if you
select the Log Task Execution Time check box in the Configuration
Parameters xPC Target options tab. This check box is selected by default. See
“Adding an xPC Target Scope Block” in Chapter 3 of the xPC Target getting
started documentation.

3-38

Signal logging

All scopes copy the last N samples from the log buffer to the target object logs
(tg.Timelog, tg.OutputLog, tg.StatelLog, and tg.TETLog). xPC Target
calculates the number of samples N for a signal as the value of Signal logging
buffer size in doubles divided by the number of logged signals (1 time, 1 task
execution time (TET), outputs, states).

After you run a target application, you can plot the state and output signals.
This procedure uses the Simulink model xpc_osc3.mdl as an example, and
assumes you have created and downloaded the target application for that

model. It also assumes that you have assigned tg to the appropriate target PC.

1 In the MATLAB window, type
+tg or tg.start or start(tg)

The target application starts and runs until it reaches the final time set in
the target object property tg.StopTime.

The outputs are the signals connected to Simulink Outport blocks. The
model xpcosc.mdl has just one Outport block, labeled 1, and there are two
states. This Outport block shows the signals leaving the blocks labeled
Integratorl and Signal Generator.

2 Plot the signals from the Outport block and the states. In the MATLAB
window, type

plot(tg.TimeLog,tg.Outputlog)

Values for the logs are uploaded to the host PC from the target application
on the target PC. If you want to upload part of the logs, see the target object
method getlog on page 14-44.

The plots shown below are the result of a real-time execution. To compare
this plot with a plot for a non-real-time simulation, see “Simulating the
Model from MATLAB” in Chapter 3 of the xPC Target getting started
documentation.

3-39

3 Signals and Parameters

Chrgwer ~-lolx|

File Edit Wew Insert Tools Desktop ‘indow Help a

DEEES RAOMS® | E |02 0O

10 T T T T T T T T T

o 4

4| i

5l 4

Al 4

_10 | 1 1 | | 1 | | 1
155 16 16.5 17 17.5 12 12.5 12 185 20 205

3-40

Signal logging

3 In the MATLAB window, type
plot(tg.TimelLog,tg.TETLoOQ)

Values for the task execution time (TET) log are uploaded to the host PC
from the target PC. If you want to upload part of the logs, see the target
object method getlog on page 14-44.

The plot shown below is the result of a real-time run.

JFiguetr =10 x|
File Edit ‘iews Insert Tools Deskbop Window Help L
DeE&E kaaaMme (€| 08 a0
X167
15 T T T T T T T T T
14t E
1.2+ E
12+ E
11k E
1k _
= E
08+ E
0? 1 1 1 1 1 1 1 1 1
16.5 16 16.5 17 17.5 18 18.5 19 18.5 20 205

The TET is the time to calculate the signal values for the model during each
sample interval. If you have subsystems that run only under certain
circumstances, plotting the TET would show when subsystems were
executed and the additional CPU time required for those executions.

3-41

3 Signals and Parameters

4 In the MATLAB window, type either
tg.AvgTET or get(tg, 'AvgTET')

MATLAB displays the following information about the average task
execution time.

ans =
5.7528e-006

The percentage of CPU performance is the average TET divided by the sample
time.

Signal Logging with a Web Browser

When you stop the model execution, another section of the Web browser
interface appears that enables you to download logging data. This data is in
comma-separated value (CSV) format. This format can be read by most
spreadsheet programs and also by MATLAB using the csvread function.

This section of the Web browser interfaces appears only if you have enabled
data logging, and buttons appear only for those logs (states, output, and TET)
that are enabled. If time logging is enabled, the first column of the CSV file is
the time at which data (states, output, and TET values) was acquired. If time
logging is not enabled, only the data is in the CSV file, without time
information.

You analyze and plot the outputs and states of your target application to
observe the behavior of your model, or to determine the behavior when you vary
the input signals.

Time, states, and outputs — Logging the output signals is possible only if you
add Outport blocks to your Simulink model before the build process, and in the
Configuration Parameters Data Import/Export node, select the Save to
workspace check boxes. See “Entering Parameters for the Outport Blocks” in
Chapter 3 in the xPC Target getting started documentation.

Task execution time — Logging the task execution time is possible only if you
select the Log Task Execution Time check box in the Configuration
Parameters xPC Target options node. This check box is selected by default.
See “Entering Parameters for an xPC Target Scope Block” in Chapter 3 in the
xPC Target getting started documentation.

3-42

Parameter Tuning and Inlining Parameters

Parameter Tuning and Inlining Parameters

By default, xPC Target lets you change parameters in your target application
while it is running in real time.

You can also improve overall efficiency by inlining parameters. xPC Target
supports the Real-Time Workshop inline parameters functionality (see the
using Real-Time Workshop documentation for further details on inlined
parameters). By default, this functionality makes all parameters nontunable.
If you want to make some of the inlined parameters tunable, you can do so
through the Model Parameter Configuration dialog (see “Inlined Parameters”
on page 3-56.)

This section includes the following topics:

¢ “Parameter Tuning with xPC Target Explorer” on page 3-44 — Use the xPC
Target Explorer to change block parameters in your target application.

¢ “Parameter Tuning with MATLAB” on page 3-47 — Use the MATLAB
Command Window and target objects in your MATLAB workspace to change
target application parameters.

¢ “Parameter Tuning with Simulink External Mode” on page 3-50 — Connect
your Simulink model to your target application, and change target
application parameters by changing Simulink block parameters.

Note Opening a dialog box for a source block causes Simulink to pause.
While Simulink is paused, you can edit the parameter values. You must close
the dialog box to have the changes take effect and allow Simulink to continue.

¢ “Parameter Tuning with a Web Browser” on page 3-53 — Connect your
target application to a Web browser with the target application running on
a target PC connected to a network.

¢ “Inlined Parameters” on page 3-56 — Inline parameters and specify that
some parameters can be tunable.

3-43

3 Signals and Parameters

Parameter Tuning with xPC Target Explorer

xPC Target lets you change parameters in your target application while it is
running in real time. With these functions you do not need to set Simulink to
external mode, and you do not need to connect Simulink with the target
application.

You can download parameters to the target application while it is running or
between runs. This feature lets you change parameters in your target
application without rebuilding the Simulink model. You cannot use xPC Target
Explorer to change tunable source block parameters while a simulation is
running.

After you download a target application to the target PC, you can change block
parameters using xPC Target Explorer. This procedure uses the Simulink
model xpcosc.mdl as an example, and assumes you have created and
downloaded the target application for that model.

1 In xPC Target Explorer, right-click the downloaded target application node.
For example, xpcosc.

2 Select Start.

3 To get the list of parameters in the target application, expand the Model
Hierarchy node under the target application.

The Model Hierarchy expands to show the elements in the Simulink model.

3-44

Parameter Tuning and Inlining Parameters

Canfiguration

File System

s local disk b
s local disk et
i Rpoosc

........ =1 GainZ Parameters

....... ~= FGain]
....... ~= Gainl
....... ~= Gan?
....... £ Integrator Signals
------- = Integrator]

------- ~= Signal Generatar
....... £ Sum —

The model hierarchy only shows blocks that have tunable parameters.
4 Select the parameter of the signal you want to edit. For example, select Gain.

The right pane displays the block parameters dialog for Gain. There is one
parameter, Gain, for this block. The current value of the Gain parameter is
displayed.

5 Double-click the box that contains the gain value.
The box becomes editable.

6 Enter a new value for the gain.

7 Press the Enter key.

The box is updated and the Update Parameter button becomes active.

3-45

3 Signals and Parameters

Updated gain value

) #PC Target Explorer =10l

File Target Application Tools Help ~
¥

XE|»r = |H| W
| *PC Target Hiearachy Function Block Parameters: xpcosclv |

;I Gain

1
1 2000000

S |ocal disk et
HpCOST

1 Signal Generate
....... £ Gain
....... £ Gainl
....... £ Gair?
------- ~ Integrator
....... ~£ Integratarl
------- ~& Signal Generatc
....... £ Sum
= #PC Scopes
Hast Scopels]
Target Scope(s

File Scopefs] T
»

Update Parameter

1 | i

4]
Refresh Enabled

If there is a scope, the plot frame then updates the signals after running the
simulation with the new parameter value.

8 Stop the target application. For example, to stop the target application
xpcosc, right-click it and select Stop.

The target application on the target PC stops running.

3-46

Parameter Tuning and Inlining Parameters

Parameter Tuning with MATLAB

You use the MATLAB functions to change block parameters. With these
functions you do not need to set Simulink to external mode, and you do not need
to connect Simulink with the target application.

You can download parameters to the target application while it is running or
between runs. This feature lets you change parameters in your target
application without rebuilding the Simulink model.

After you download a target application to the target PC, you can change block
parameters using xPC Target functions. This procedure uses the Simulink
model xpcosc.mdl as an example, and assumes you have created and
downloaded the target application for that model. It also assumes that you
have assigned tg to the appropriate target PC.

1 In the MATLAB window, type
+tg or tg.start or start(tg)

The target PC displays the following message.
System: execution started (sample time: 0.001000)

2 Display a list of parameters. Type either

set(tg, 'ShowParameters','on') or tg.ShowParameters='on’

and then type
tg
The MATLAB window displays a list of properties for the target object.

ShowParameters = on

3-47

3 Signals and Parameters

3-48

Parameters =

INDEX VALUE TYPE SIZE PARAMETER NAME BLOCK NAME

0 0 DOUBLE Scalar Initial Condition Integratori

1 4 DOUBLE Scalar Amplitude Signal
Generator

2 20 DOUBLE Scalar Frequency Signal
Generator

3 1000000 DOUBLE Scalar Gain Gain

4 0 DOUBLE Scalar Initial Condition Integrator

5 400 DOUBLE Scalar Gain Gain1

6 1000000 DOUBLE Scalar Gain Gain2

Change the gain. For example, to change the Gainl block, type either
tg.setparam(5,800) or setparam(tg,5,800)
As soon as you change parameters, the changed parameters in the target

object are downloaded to the target application. The target PC displays the
following message:

ans =
parIndexVec: 5

0ldValues: 100
NewValues: 800

If there is a scope, the plot frame then updates the signals after running the
simulation with the new parameters.

Parameter Tuning and Inlining Parameters

4 Stop the target application. In the MATLAB window, type
-tg or tg.stop or stop(tg)
The target application on the target PC stops running, and the target PC
displays the messages like the following:

System: execution stopped
minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

Note Method names are case sensitive and need to be complete, but property
names are not case sensitive and need not be complete as long as they are
unique.

Resetting Target Application Parameters to Previous Values

You can reset parameters to preceding target object property values by using
xPC Target methods on the host PC. The setparam method returns a structure
that stores the parameter index, the previous value, and the new value. If you
expect to want to reset parameter values, set the setparam method to a
variable. This variable points to a structure that stores the parameter index
and the old and new parameter values for it.

1 In the MATLAB window, type
pt=setparam(tg,5,800)
The setparam method returns a result like:

pt =

parIndexVec: 5
Oldvalues: 100
NewValues: 800

3-49

3 Signals and Parameters

3-50

2 To reset to the previous values, type

setparam(tg,pt.parIndexVec,pt.0ldvValues)

ans =
parIndexVec: 5
Oldvalues: 800
NewValues: 100

Parameter Tuning with Simulink External Mode

You use Simulink external mode to connect your Simulink block diagram to
your target application. The block diagram becomes a graphical user interface
to your target application. You set up Simulink in external mode to establish a
communication channel between your Simulink block window and your target
application.

In Simulink external mode, wherever you change parameters in the Simulink
block diagram, Simulink downloads those parameters to the target application
while it is running. This feature lets you change parameters in your program
without rebuilding the Simulink model to create a new target application.

Note Opening a dialog box for a source block causes Simulink to pause.
While Simulink is paused, you can edit the parameter values. You must close
the dialog box to have the changes take effect and allow Simulink to continue.

After you download your target application to the target PC, you can connect
your Simulink model to the target application. This procedure uses the
Simulink model xpcosc.mdl as an example, and assumes you have created and
downloaded the target application for that model.

1 In the Simulink window, and from the Simulation menu, click External.

A check mark appears next to the menu item External, and Simulink
external mode is activated.

Parameter Tuning and Inlining Parameters

2 In the Simulink block window, and from the Simulation menu, click
Connect to target.

All of the current Simulink model parameters are downloaded to your target
application. This downloading guarantees the consistency of the parameters
between the host model and the target application.

The target PC displays the following message, where # is the number of
tunable parameters in your model:

ExtM: Updating # parameters

3 From the Simulation menu, click Start Real-Time Code, or, in the
MATLAB window, type

+tg or tg.start or start(tg)

The target application begins running on the target PC, and the target PC
displays the following message:

System: execution started (sample time: 0.000250)
4 From the Simulation block diagram, double-click the block labeled Gainl.

The Block Parameters: Gainl parameter dialog box opens.

Gain
’7 Element-wize gain [v = K."u] or matrix gain (v = K7uory = o).

fdain ISignaI data types I Parameter data types I

Gain:

feod

Mulipication: | Element-wise(K.) |

Sample time [-1 for inherited):

|1

ok LCancel Help Apply

3-51

3 Signals and Parameters

5 In the Gain text box, enter 800 and click OK.

As soon as you change a model parameter and click OK, or you click the
Apply button on the Block Parameters: Gainl dialog box, all the changed
parameters in the model are downloaded to the target application, as shown
below.

HPCOSC
124MB System! COM1 detected, BaudRate: 115208
i System: download started...
RT, 1 S
t ox zlzgte System: download finished
1e+808 System! initializing application...
System! initializing application finished

9. 080625 ExtM: updating 7 parameters
S5.126e-886 System! execution started (sample time! 8.808258)
74.48 s ExtM: updating parameter

6 From the Simulation menu, click Disconnect from Target.

The Simulink model is disconnected from the target application. Now, if you
change a block parameter in the Simulink model, there is no effect on the
target application. Connecting and disconnecting Simulink works
regardless of whether the target application is running or not.

7 From the Simulation menu, click Stop real-time code, or, in the MATLAB
window, type either
stop(tg) or -tg
The target application on the target PC stops running, and the target PC
displays the following messages:

System: execution stopped
minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

3-52

Parameter Tuning and Inlining Parameters

Parameter Tuning with a Web Browser
The Parameters pane displays a list of all the tunable parameters in your
model. Row and column indices for vector/matrix parameters are also shown.

After you connect a Web browser to the target PC you can use the Parameters
page to change parameters in your target application while it is running in real
time:

1 In the left frame, click the Parameters button.
The browser loads the Parameter List pane into the right frame.

If the parameter is a scalar parameter, the current parameter value is
shown in a box that you can edit.

If the parameter is a vector or matrix, there is a button that takes you to
another page that displays the vector or matrix (in the correct shape) and
enables you to edit the parameter.

2 Enter a new parameter value into one or more of the parameter boxes, and
then click the Apply button.

The new parameter values are uploaded to the target application.

Saving and Reloading Application Parameters with
MATLAB

After you have a set of target application parameter values that you are
satisfied with, you can save those values to a file on the target PC. You can then
later reload these saved parameter values to the same target application. You
can save parameters from your target application while the target application
is running or between runs. This feature lets you save and restore parameters
in your target application without rebuilding the Simulink model. You save
and restore parameters with the target object methods saveparamset and
loadparamset.

The procedures assume that

® You have a target application object named tg.
® You have assigned tg to the appropriate target PC.
® You have a target application downloaded on the target PC.

3-53

3 Signals and Parameters

3-54

® You have parameters you would like to save for reuse. See
= “Parameter Tuning with MATLAB” on page 3-47
= “Parameter Tuning with Simulink External Mode” on page 3-50

= “Parameter Tuning with a Web Browser” on page 3-53

Saving the Current Set of Target Application Parameters

To save a set of parameters to a target application, use the saveparamset
method. The target application can be stopped or running.

1 Identify the set of parameter values you want to save.

2 Select a descriptive filename to contain these values. For example, use the
model name in the filename. You can only load parameter values to the same
target application from which you saved the parameter values.

3 In the MATLAB window, type either

tg.saveparamset('xpc_osc4_parami') or
saveparamset(tg, 'xpc_osc4_parami')

xPC Target creates a file named xpcosc4 parami in the current directory of
the target PC, for example, C:\xpcosc4 parami.

For a description of how to restore parameter values to a target application, see
“Loading Saved Parameters to a Target Application” on page 3-54. For a
description of how to list the parameters and values stored in the parameter
file, see “Listing the Values of the Parameters Stored in a File” on page 3-55.

Loading Saved Parameters to a Target Application

Toload a set of saved parameters to a target application, use the loadparamset
method. You must load parameters to the same model from which you save the
parameter file. If you load a parameter file to a different model, the behavior is
undefined.

This section assumes that you have a parameters file saved from an earlier run
of saveparamset (see “Saving the Current Set of Target Application
Parameters” on page 3-54).

1 From the collection of parameter value files on the target PC, select the one
that contains the parameter values you want to load.

Parameter Tuning and Inlining Parameters

2 In the MATLAB window, type either

tg.loadparamset('xpc_osc4 parami') or
loadparamset(tg, 'xpc_osc4 parami')

xPC Target loads the parameter values into the target application.

For a description of how to list the parameters and values stored in the
parameter file, see “Listing the Values of the Parameters Stored in a File” on
page 3-55.

Listing the Values of the Parameters Stored in a File

To list the parameters and their values, load the file for a target application,
then turn on the ShowParameters target object property.

This section assumes that you have a parameters file saved from an earlier run
of saveparamset (see “Saving the Current Set of Target Application
Parameters” on page 3-54).

1 Ensure that the target application is stopped. For example, type
tg.stop

2 Load the parameter file. For example, type
tg.loadparamset('xpc_osc4_parami');

3 Display a list of parameters. For example, type

tg.ShowParameters='on';

and then type
tg

The MATLAB window displays a list of parameters and their values for the
target object.

3-55

3 Signals and Parameters

Inlined Parameters

This procedure describes how you can globally inline parameters for a model,
then specify which of these parameters you still want to be tunable. It assumes
that you are familiar with how to build target applications (if you are not, read
the xPC Target getting started documentation first). After you have performed
this procedure, you will able to tune these parameters.

® “Tuning Inlined Parameters with xPC Target Explorer” on page 3-58
® “Tuning Inlined Parameters with MATLAB” on page 3-60

The following procedure uses the Simulink model xpcosc.mdl as an example.

1 In the MATLAB Command Window, type

Xpcosc
The model is displayed in the Simulink window.

2 Select the blocks of the parameters you want to make tunable. For example,
this procedure makes the signal generator’s amplitude parameter tunable.
Use the variable A to represent the amplitude.

3 Double-click the Signal Generator block and enter A for the Amplitude
parameter. Click OK.

4 In the MATLAB Command Window, assign a constant to that variable. For
example, type

A =4
The value is displayed in the MATLAB workspace.

5 In the Simulink window, from the Simulation menu, click Configuration
Parameters.

The Configuration Parameters dialog is displayed for the model.
6 Click the Optimization node.
7 In the rightmost pane, select the Inline parameters check box.

The Configure button is enabled.

3-56

Parameter Tuning and Inlining Parameters

8 Click the Configure button.

The Model Parameter Configuration dialog is displayed. Note that the
MATLAB workspace contains the constant you assigned to A.

9 Select the line that contains your constant and click Add to table.

The Model Parameters Configuration dialog appears as follows.

«): Model Parameter Configuration: xpcosc = |EI |£|

r Description
Define the global (tunable) parameters for wour model. These parameters affect:

1. the simulation by providing the ability to tune parameters during execution, and
2. the generated code by enabling access to parameters by other modules.

rSource list rGlobal (funable) parameters

IMATLAB wiorkspace ﬂ Storage class | Storage type gualifier

Marme
1

Refresh list Addito tahle == R Remowe |

Ready [o]34 Cancel | Help | Apply |

If you have more global parameters you want to be able to tune, add them
also.

10 If you want, increase the model stop time, or set it to inf.

11 When you are finished, click Apply, then OK, and save the model. For
example, save it as xpc_osc5.mdl.

3-57

3 Signals and Parameters

12 Build and download the model to your target PC.

You can next use xPC Target Explorer or MATLAB to work with the tunable
parameters.

Tuning Inlined Parameters with xPC Target Explorer

This procedure describes how you can tune inlined parameters through the
xPC Target Explorer. It assumes that you have built and downloaded the
model from the topic “Inlined Parameters” on page 3-56 to the target PC. It also
assumes that the model is running.

1 If you have not yet started xPC Target Explorer, do so now. Be sure it is
connected to the target PC to which you downloaded the xpc_osc5 target
application.

2 To get the list of tunable inlined parameters in the target application,
expand the target application node, then expand the Model Hierarchy node
under the target application node.

= wpc_ozch
B ﬁ Model Higrarchy

Gain
Gair
GainZ
Inteqratar
Inteqgratarl
Signal Generator
Sum
=1 Model Parameters

[#PC Seopes

i th h b b

Note that the Model Hierarchy node displays a list of signals and an object
called Model Parameters. Model Parameters contains the list of tunable
inlined parameters.

3 To display the tunable parameters, select Model Parameter.
The constant A and its value are shown in the right pane.
4 Double-click the box that contains the tunable parameter A.

The box becomes editable.

3-58

Parameter Tuning and Inlining Parameters

5 Enter a new value for the parameter.

6 Press the Enter key.

The box is updated and the Update Parameter button becomes active.

#PC Target Hiearachy

Maodel Paratmeters

El

Host PC Root
[% Compilerz) Configuration

[- IE DLM[g): D workbepchrld_m

wpe_ozch.dim
wpoozc. dim

[TargetPC1

B % Configuration

[- & Communication
-------- & Settings

R & Appearance
B File System

- wpc_osch

= ﬁ todel Hierarchy
Gain
Gainl
Gain2
Integrator
Integrator
Signal Gererator
Sum

%PC Scopes

-

-------- =1 Model Parameters™

[

£

1

—

1000, 0000,

dpe

7 To apply the new value, press the Update Parameter button.

8 To verify the updated value, select the signal object associated with A. For
example, select Signal Generator.

The value of Signal Generator is shown in the right pane.

3-59

3 Signals and Parameters

3-60

*PC Target Hiearachy Signal name: Signal Generatar
= % Canfiguration -] 1
- 4B Communication 1] 1000.0000

& Setting:

e 60 ARDBATANCE
E ------ g File Syztem
i e fawe |ocal disk c:h

....... Target Scope™
-------- File Scope[s]‘;l

9 Stop the target application.

Tuning Inlined Parameters with MATLAB

This procedure describes how you can tune inlined parameters through
MATLAB. It assumes that you have built and downloaded the model from the
topic “Inlined Parameters” on page 3-56 to the target PC. It also assumes that
the model is running.

You can tune inline parameters using a parameter ID similar to the way that
you use conventional parameters.

® Use the getparamid function to get the ID of the inlined parameter you want
to tune. For the block name parameter, leave a blank (' ').

® Use the setparam function to set the new value for the inlined parameter.

Parameter Tuning and Inlining Parameters

1 Save the following code in an M-file. For example, change_inlineA,

tg=xpc; %Create xPC Target object
pid=tg.getparamid('','A'); %Get parameter ID of A
if isempty(pid) %Check value of pid.
error('Could not find A');
end
tg.setparam(pid,100); S%If pid is valid, set parameter value.

2 Execute that M-file. For example, type
change_inlineA

3 To see the new parameter value, type

tg.showparameters='on'

The tg object information is displayed, including the parameters lines:
NumParameters = 1
ShowParameters = on
Parameters=INDEX VALUE TYPE SIZE PARAMETER NAM BLOCKNAME
0 100 DOUBLE Scalar A

3-61

3 Signals and Parameters

3-62

Embedded Option

The xPC Target Embedded Option allows you to boot the target PC from a device other than a
3.5 inch disk drive, such as a hard disk or flash memory. It also allows you to deploy stand-alone
applications on the target PC independent of the host PC. This chapter includes the following

sections:

Introduction (p. 4-2)

xPC Target Embedded Option Modes
(p. 4-3)

Embedded Option Setup (p. 4-9)
DOSLoader Target Setup (p. 4-12)

Stand-Alone Target Setup (p. 4-17)

Learn about the different types of embedded target
applications you can create using the xPC Target
Embedded Option

Learn about the xPC Target Embedded Option modes

Configure xPC Target to generate embedded target
applications and create a DOS system boot disk

Create a target application that boots from a device other
than a 3.5 inch disk drive

Create a target application that runs on the target PC
disconnected from the host PC and, optionally, boots from
a device other than a 3.5 inch disk drive

4 tibedded Option

4-2

Introduction

The xPC Target Embedded Option allows you to boot the xPC Target kernel
from a 3.5 inch disk drive and other devices, including a flash disk or a hard
disk drive. By using the xPC Target Embedded Option, you can configure a
target PC to automatically start execution of your embedded application for
continuous operation each time the system is booted. You can use this
capability to deploy your own real-time applications on target PC hardware.

The xPC Target Embedded Option has two modes, DOSLoader and
StandAlone, that create two different types of embedded target applications:

® DOSLoader mode allows you to boot a target PC from a device other than a
3.5 inch disk, such as a hard disk or flash memory. You can then download a
target application from the host PC to the target PC.

e StandAlone mode bundles the kernel and target application into one entity
that you can copy onto a 3.5 inch disk or alternate device. This allows the
target PC to run as a stand-alone PC with the target application already
loaded.

Additionally, the xPC Target Embedded Option allows you to deploy
stand-alone GUI applications running on the host PC to control, change
parameters, and acquire signal data from a target application.

Without the xPC Target Embedded Option, you can create, but not deploy,
stand-alone GUI applications running on the host PC to control, change
parameters, and acquire signal data from a target application. This feature
uses the xPC Target API with any programming environment, or the xPC
Target COM API with any programming environment, such as Visual Basic,
that can use COM objects. See the xPC Target API documentation for further
information about this feature.

xPC Target Embedded Option Modes

xPC Target Embedded Option Modes

The xPC Target Embedded Option extends the xPC Target base product with
two modes:

¢ DOSLoader — Use this mode of operation to start the kernel on the target
PC from a 3.5 inch disk, flash disk, or a hard disk. After the target PC boots
with the kernel, it waits for the host computer to download a real-time
application. You can control the target application from either the host PC or
the target PC. See “DOSLoader Mode Overview” on page 4-4 for further
details.

¢ StandAlone — Use this mode to load the target PC with both the xPC Target
kernel and a target application. Like DOSLoader mode, this mode of
operation can start the kernel on the target PC from 3.5 inch disk, flash disk,
or hard disk. After starting the kernel on the target PC, StandAlone mode
can also automatically start the target application that you loaded with the
kernel. Thus, this configuration provides complete stand-alone operation.
StandAlone mode eliminates the need for a host PC and allows you to deploy
real-time applications on target PCs. See “StandAlone Mode Overview” on
page 4-6 for further details.

Regardless of the mode, you initially boot your target PC with DOS from any
boot device, then the xPC Target kernel is started from DOS. xPC Target only
needs DOS to boot the target PC and start the xPC Target kernel. DOS is no
longer available on the target PC unless you reboot the target PC without
starting the xPC Target kernel.

Note The xPC Target Embedded Option requires a boot device with DOS
installed. It otherwise does not have any specific requirements as to the type
of boot device. You can boot xPC Target from any device that has DOS
installed. DOS software and license are not included with xPC Target or with
the xPC Target Embedded Option.

Without the xPC Target Embedded Option, you can only download real-time
applications to the target PC after booting the target PC from an xPC Target
boot disk. You must use a target PC equipped with a 3.5 inch disk drive.

4 tibedded Option

The following are some instances where you might want to use the xPC Target

Embedded Option. You might have one of these situations if you deploy the

target PC in a small or rugged environment.

e Target PC does not have a 3.5 inch disk drive.

® The Target PC 3.5 inch disk drive must be removed after setting up the
target system.

This section includes the following topics:

® “DOSLoader Mode Overview” on page 4-4
¢ “StandAlone Mode Overview” on page 4-6
® “Restrictions” on page 4-8

DOSLoader Mode Overview

The primary purpose of DOSLoader mode is to allow you to boot from devices
other than a 3.5 inch disk drive. The following summarizes the sequence of
events for DOSLoader mode. For a detailed step-by-step procedure, see
“DOSLoader Target Setup” on page 4-12.

1 Format a 3.5 inch disk.

2 Copy a version of DOS onto this disk and insert this DOS disk into the host
PC 3.5 inch disk drive.

3 In the host PC MATLAB Command Window, type xpcexplr.

4 In the xPC Target Explorer xPC Target Hierarchy pane, select a target PC
Configuration node.

5 From the Target boot mode list, select DOSLoader.

6 Create a boot disk. The boot disk will contain the following files:

= DOS files — Provide your own copy of DOS to boot the target PC. For
example, you can acquire DOS from FreeDOS.

The MathWorks has tested xPC Target with the following: FreeDOS Beta
8 (“Nikita”) distribution, MS-DOS (6.0 or higher), PC DOS, and Caldera
OpenDOS.

xPC Target Embedded Option Modes

= autoexec.bat —xPC Target version of this file that calls the xpcboot.com
executable to boot the xPC Target kernel.

= checksum.dat — xPC Target version of this file that optimizes boot disk
creation.

= *_.rtb — This file contains the xPC Target kernel. It also contains, as
applicable, specifications such as serial or TCP/IP communications and the
IP address of the target PC.

= xpcboot.com — Contains the xPC Target boot executable. This file
executes an xPC Target application and executes the *.rtb file.

7 Move the boot disk to the target PC.

8 Set up the target PC boot device such as a 3.5 inch disk, flash disk, or a hard
disk drive. As necessary, transfer the contents of the boot disk to the target
PC boot device.

9 Boot the target PC.

When you boot the target PC, the target PC loads DOS, which then calls the
xPC Target autoexec.bat file to start the xPC Target kernel (*.rtb). The
target PC then awaits commands from the host PC.

10 To execute a target application, build and download one from the host PC to
the target PC. DOSLoader mode does not automatically load a target
application to the target PC. The xPC Target application executes entirely
in protected mode using the 32-bit flat memory model.

Note This mode requires that the host PC and target PC communicate either
via an RS-232 serial connection or a TCP/IP network connection.

4 tibedded Option

StandAlone Mode Overview

The primary purpose of the StandAlone mode is to allow you to use a target PC
as a stand-alone system. StandAlone mode enables you to deploy control
systems, DSP applications, and other systems on PC hardware for use in
production applications using PC hardware. Typically these production
applications are found in systems where production quantities are low to
moderate.

The following summarizes the sequence of events for StandAlone mode. For a
detailed step-by-step procedure, see “Stand-Alone Target Setup” on page 4-17.

1 Format a 3.5 inch disk.

2 Copy a version of DOS onto this disk and insert this DOS disk into the host
PC 3.5 inch disk drive.

3 From the host PC MATLAB window, type xpcexplr.

4 Inthe xPC Target Explorer xPC Target Hierarchy pane, select a target PC
Configuration node.

5 From the Target boot mode list, select StandAlone.
6 Select and build a model.

This step creates a directory in the current working directory named
modelname_xpc_emb.

7 Copy the contents of model name_emb to the DOS disk. The disk should now
contain the following files:

= DOS files — Provide your own copy of DOS to boot the target PC. For
example, you can acquire DOS from FreeDOS.

The MathWorks has tested xPC Target with the following: FreeDOS Beta
8 (“Nikita”) distribution, MS-DOS (6.0 or higher), PC DOS, and Caldera
OpenDOS.

= *.rtb — This file contains the xPC Target kernel. It also contains, as
applicable, specifications such as serial or TCP/IP communications and the
IP address of the target PC.

xPC Target Embedded Option Modes

= xpcboot.com — Contains the xPC Target boot executable. This file
executes an xPC Target application and executes the *.rtb file.

= autoexec.bat —xPC Target version of this file that calls the xpcboot.com
executable to boot the xPC Target kernel.

8 Move the boot disk to the target PC.

9 Set up the target PC boot device such as a 3.5 inch disk, flash disk, or a hard
disk drive. Transfer the contents of the boot disk to the target PC boot
device.

10 Boot the target PC.

When you boot the target PC, the target PC loads DOS, which then calls the
xPC Target autoexec.bat file to start the xPC Target kernel (*.rtb) and
associated target application. If you set up the boot device to run the xPC
Target autoexec.bat file upon start-up, the target application starts
executing as soon as possible. The xPC Target application executes entirely
in protected mode using the 32-bit flat memory model.

Note This mode does not require any connection between the host PC and
target PC.

With StandAlone mode, the target PC does not communicate with the host PC.
If you want to track signals on the target PC monitor, your target PC hardware
configuration needs to include a monitor. To trace signals, you must add xPC
Target scopes to the application before you build and transfer it to the target
PC. See “Adding Target Scope Blocks to Stand-Alone Applications” on

page 4-18.

If you do not want to view signals on the target PC, you do not need a monitor
for the target PC, nor do you need to add target scopes to the application. In
this instance, your xPC Target system operates as a black box without a
monitor, keyboard, or mouse. Stand-alone applications are automatically set to
continue running for an infinite time duration or until the target computer is
turned off.

4-7

4 tibedded Option

Restrictions

The following restrictions apply to the booted DOS environment when you use
xpcboot.com to execute the target applications:

® The CPU must execute in real-time mode.

® While loaded in memory, the DOS partition must not overlap the address
range of a target application.

To satisfy these restrictions,

® Do not use additional memory managers like emm386 or gemm.

® Avoid any utilities that attempt to load in high memory (for example,
himem.sys). If the target PC DOS environment does not use a config.sys
file or memory manager entries in the autoexec.bat file, there should be no
problems when running xpcboot. com.

¢ Ensure that the xpcexplr TargetMouse option setting is consistent with
your hardware. Some PC hardware might use an RS-232 port for the mouse,
while others use a PS2 mouse. If a mouse is not required in your application,
select None as your setting for the TargetMouse. Choosing this setting helps
prevent problems.

4-8

Embedded Option Sefup

Embedded Option Setup

This section includes the following topics:

® “Updating the xPC Target Environment” on page 4-9
® “Creating a DOS System Disk” on page 4-11

Updating the xPC Target Environment

After the xPC Target Embedded Option software has been correctly installed,
the xPC Target environment, visible through xpcexplr or getxpcenv, contains
two additional property choices for DOSLoader or StandAlone, in addition to
the default BootDisk that you normally use with xPC Target.

It is assumed that the xPC Target environment is already set up and working
properly with the xPC Target Embedded Option enabled. If you have not
already done so, confirm this now.

You can use the function getxpcenv to see the current selection for TargetBoot,
or you can view this through the xPC Target Explorer window. Start
MATLAB and execute the function

xpcexplr

In the xPC Target Explorer xPC Target Hierarchy pane, select a target PC
Configuration node. You see the property Target boot mode, as well as the
currently selected value. The choices are

® BootFloppy — Standard mode of operation when xPC Target Embedded
Option is not installed.

¢ DOSLoader — For invoking the kernel on the target PC from DOS.

¢ StandAlone — For invoking the kernel on the target PC from DOS and
automatically starting the target application without connecting to a host
computer. With this mode, the kernel and the target application are
combined as a single module that is placed on the boot device.

4 tibedded Option

4-10

) uPC Target Explorer ol x|
File Target Applicaktion Tools Help "

B X 5|y = |H| W

| *PC Target Hiea... | TargetPC1 Configuration

Thiz zectioh contains general [non-model specific] parameters for the configuration of :PC T arget.
After getting the neceszany communication and kermel configuration values, click the Create
Boatdisk button to create an #PC Target boot floppy disk. Uze this disk to boot a target computer
with the «PC Target kemel,

Target boot mods: BootFloppy | Create Bootdisk |

B File BootFlopr

DS oade
o e ey
J | 2 [o]

| Refresh Enabled

The default setting for the option Target boot mode is BootFloppy. When you
are using BootFloppy, xPC Target must first create a target boot disk, which is
then used to boot the target PC.

The option TargetBoot can be set to two other values, namely DOSLoader or
StandAlone. If the xPC Target loader is booted from any boot device with DOS
installed, the value DOSLoader must be set as shown above. If you want to use
a stand-alone application that automatically starts execution of your target
application immediately after booting, specify StandAlone.

The xPC Target environment is updated when you change the value. If your
choice is DOSLoader, you must create a new target boot disk by clicking the
Create BootDisk button. Note that this overwrites the data on the inserted
target boot disk as new software modules are placed on the target boot disk. If
your choice is StandAlone, your environment is updated, but you do not create
a new target boot disk. Upon building your next real-time application, all
necessary xPC Target files are saved to a subdirectory below your current
working directory. This subdirectory is named with your model name with the
string ' xpc_emb' appended, such as xpcosc_xpc_emb.

Embedded Option Sefup

For more detailed information about how to use the xPC Target Explorer
window, see “xPC Target Explorer” in Chapter 2 in the xPC Target getting
starting documentation.

Creating a DOS System Disk

When using DOSLoader mode or StandAlone mode, you must first boot your
target PC with DOS. These modes can be used from any boot device including
flash disk, 3.5 inch disk drive, or a hard disk drive.

In order to boot DOS with a target boot disk, a minimal DOS system is required
on the boot disk. With DOS, you can create a DOS boot disk using the command

sys A:

Note xPC Target Embedded Option does not include a DOS license. You
must obtain a valid DOS license for your target PC.

It is helpful to copy additional DOS utilities to the boot disk, including

* A DOS editor to edit files
® The format program to format a hard disk or flash memory
® The fdisk program to create partitions

¢ The sys program to transfer a DOS system onto another drive, such as the
hard disk drive

A config.sys file is not necessary. The autoexec.bat file should be created to
boot the loader or a stand-alone xPC Target application automatically. This is
described in the following sections.

4-11

4 tibedded Option

4-12

DOSLoader Target Setup

DOSLoader mode allows you to copy the xPC Target kernel to the target flash
disk, remove the 3.5 inch disk drive, and then boot the xPC Target kernel.
Alternatively, you can also boot the xPC Target kernel from the target PC

3.5 inch disk drive. The target application is still downloaded from the host PC.
Use this mode for applications where an xPC Target host is not easily
accessible.

This section includes the following topics:
® “Updating Environment Properties and Creating a Boot Disk” on page 4-12
— Select DOSLoader mode in the xPC Target Explorer window.

® “Copying the Kernel to Flash Memory” on page 4-14 — Copy the xPC Target
kernel to the flash disk on the target PC and then start the kernel running.

® “Creating a Target Application for DOSLoader Mode” on page 4-16 —
Create, download, and run a target application from a host PC.

Updatini Environment Properties and Creating a
Boot Dis

xPC Target uses the environment properties to determine what files to create
for the various target boot modes.

This procedure assumes you have serial or network communication working
correctly between your host computer and a target PC. It is helpful to
successfully create a target application with the TargetBoot option in the xPC
Target Explorer window set to BootFloppy before trying to create a kernel
that boots from DOS.

1 On the host computer, start MATLAB.

2 In the MATLAB Command Window, type
xpcexplr

The xPC Target Explorer window opens.

3 Inthe xPC Target Explorer xPC Target Hierarchy pane, select a target PC
Configuration node.

4 From the Target boot mode list, select DOSLoader.

DOSloader Target Setup

5 Click Create BootDisk.

A message box opens with the following message.

Insert a formatted floppy disk into your host PC disk drive and
click OK to continue.

6 Insert a 3.5 inch disk, and then click OK.

The files checksum.dat, xpcsgo1.rtb (serial) or xpctgo1.rtb (TCP/IP),
xpcboot.com, and autoexec.bat are copied to the disk.

With DOSLoader mode, the correct *.rtb file is added to the DOS disk
according to the options specified in the following table.

xPC Target Environment HostTargetComm: RS-232 HostTargetComm: TCP/IP

TargetScope: Disabled xpcston.rtb xpctton.rtb

TargetScope: Enabled xpcsgon.rtb xpctgon.rtb

The numeric value of n corresponds to the maximum model size. This value
is either 1, 4, or 16 megabytes. The default value for n is 1, or a 1-megabyte
maximum model size.

Note that the autoexec.bat file should contain at least the following line:

xpcboot xxx.rtb

where xxx.rtb is the file described in the table above. View this
autoexec.bat file to confirm this.

7 If you want to boot the target PC from the 3.5 inch disk,
a Remove the 3.5 inch disk from the host PC.

b Put that disk into the target PC disk drive.

4-13

4 tibedded Option

4-14

¢ Reboot the target PC. The DOS is booted from the target boot disk and
the autoexec.bat files, resulting in the automatic execution of the xPC
Target loader. From this point onward, the CPU runs in protected mode
and DOS is discarded.

Otherwise, if you want to boot the target PC from flash memory instead of
the 3.5 inch disk, see “Copying the Kernel to Flash Memory” on page 4-14 for
a description of how to copy the kernel to flash memory. The same procedure
works with flash disks and other boot devices.

Note You can repeat this procedure as necessary. There are no restrictions
on the number of xPC Target boot floppies that you can create. However, xPC
Target and the xPC Target Embedded Option do not include DOS licenses.
You must purchase valid DOS licenses for your target PCs from the supplier
of your choice.

Copying the Kernel to Flash Memory

One method for transferring the kernel files from a host PC to a target PC is to
use an external 3.5 inch disk drive.

After you create boot disk with the kernel files on a host PC, you can copy the
kernel files from the 3.5 inch boot disk to the flash disk. See “Updating
Environment Properties and Creating a Boot Disk” on page 4-12.

1 Ifthereis a 3.5 inch disk in the external disk drive, remove it. On the target
PC, press the Reset button.

2 Halt the boot process and bring up the DOS prompt. For example, if you see
the message for selecting the operating system to start, select Microsoft
Windows.

The boot process is stopped and a DOS prompt is displayed.

3 Insert the boot 3.5 inch disk with the xPC Target kernel into the target PC
external 3.5 inch disk drive.

DOSloader Target Setup

4 Type

copy A:\xpcsgol.rtb C:\work
copy A:\xpcboot.com C:\work
copy A:\autoexec.bat C:\work

5 Ifyouwant the kernel to run when you press the Reset button on your target
PC, save a copy of the file C: \autoexec.bat to a backup file, such as
C:\autoexec_back.wrk.

6 Edit the file C:\autoexec.bat to include the following lines. Adding these
commands to C:\autoexec.bat directs the system to execute the
autoexec.bat file located in C: \work.

cd C:\work
autoexec

Note Do not confuse C:\work\autoexec.bat with C:\autoexec.bat. The file
C:\work\autoexec.bat includes the command xpcboot.com to start the xPC
Target kernel. The file C:\autoexec.bat includes the files you want the
system to execute when the system starts up.

7 Remove the 3.5 inch disk, and then, on the target PC, press the Reset
button.

The sequence of calls during the boot process is
a C:\autoexec.bat

b C:\work\autoexec.bat

¢ C:\work\xpcboot.com

d C:\work\xpcsgol.rtb

4-15

4 tibedded Option

Creating a Target Application for DOSLoader Mode

For DOSLoader mode, a target application is created on a host PC and
downloaded to your target PC.

After you set the Simulink and Real-Time Workshop® parameters for code
generation with xPC Target in your Simulink model, you can use xPC Target
with DOSLoader mode to create a target application.

1 In the MATLAB window, type the name of a Simulink model. For example,
type
Xpc_osc3

A Simulink window opens with the model.

2 From the Tools menu, point to Real-Time Workshop, and then click Build
Model.

3 Real-Time Workshop and xPC Target create a target application and
download it to your target PC.

4-16

Stand-Alone Target Sefup

Stand-Alone Target Setup

StandAlone mode combines the target application with the kernel and boots
them together on the target PC from flash memory (or alternatively, the target
PC 3.5 inch disk drive). The host PC does not need to be connected to the target
PC. This section includes the following topics:

¢ “Updating Environment Properties” on page 4-17 — Select StandAlone mode
in the xPC Target Explorer window.

¢ “Adding Target Scope Blocks to Stand-Alone Applications” on page 4-18 —
Add target scope blocks to models to monitor signal data.

® “Creating a Kernel/Target Application” on page 4-21 — On the host PC,
create a stand-alone application.

® “Copying the Kernel/Target Application to Flash Disk” on page 4-22 — Copy
the combined xPC Target kernel and target application to the flash disk on
the target PC.

Updating Environment Properties

xPC Target uses the environment properties to determine what files to create
for the various target boot modes.

This procedure assumes you have serial or network communication working
correctly between your host computer and a target PC. It is helpful to
successfully create a target application with the TargetBoot option in the xPC
Target Explorer window set to BootFloppy before trying to create a
stand-alone application.

1 On the host computer, start MATLAB.

2 In the MATLAB window, type
xpcexplr

The xPC Target Explorer window opens.

3 Inthe xPC Target Explorer xPC Target Hierarchy pane, select a target PC
Configuration node.

4 From the Target boot mode list, select DOSLoader.

4-17

4 tibedded Option

4-18

5 From the Target boot mode list, choose StandAlone.

xPC Target updates the environment properties, and the build process is
ready to create a stand-alone kernel/target application.

For StandAlone mode, you do not create an xPC Target boot disk. Instead, you
copy files created from the build process onto a formatted 3.5 inch disk.

Adding Target Scope Blocks to Stand-Alone
Applications

When using xPC Target Embedded Option with StandAlone mode, you can
optionally use scopes of type target or file to trace signals and display them
on the target screen. Because host-to-target communication is not supported
with StandAlone mode, scope objects of type target or file must be defined
within the Simulink model before the xPC Target application is built. xPC
Target offers the Scope (xPC) block for such purposes.

E!Lihrary: spclib/Misc. 10| =|
File Edit View Formab Help
Tamet Scope Systemn TET
Id: 0 o the rBioamd
=PS Tamet
TET
Scope (xPC) Softwae
Reboot
0200, 7B8 Om200, 768 Tirre
=PC Tamet
12 port wiite 12 port ead Tirne
block =PS Tamet
pammeter block Frormn file
To xPS Tamet From xPC Tamet Frorn Fike

To add a Scope (xPC) block to a Simulink model,

1 Copy the Scope (xPC) block into your block diagram and connect the signals
you would like to view to this block. You can use multiple signals as long as
you use a Mux block to bundle them.

Stand-Alone Target Sefup

=i

File Edit WYiew Simulation Format Tools Help

oooo
&
Integrtar]

Signal
Genemtor

Cutpart

¥

hode | xpoose

simple xPC Tamget demo model Tamet Scape
Id: 1

Scope (xPGC)

2 Edit the Scope (xPC) dialog box and confirm that the check box entry for
Start scope when application starts is selected, as shown in the following
dialog box.

4-19

4 tibedded Option

4-20

m Block Parameters: Scope (xPLC) ﬂﬂ

—spcscopeblock [maszk) [link)

—Parameter

Scope number;

i

Scope type: | Target LI
¥ Start scope when application starts

Scope mode: I Graphical redraw LI
IV Grid

*-axig limits:

Jino

Murnber of samples:
|250

Mumber of pre/post samples:
Jo

Decimation:

|1

Trigger mode: I FreeRun LI

ok I LCancel | Help | Apply |

This setting is required to enable target scopes to begin operating as soon as
the application starts running. This setting is important because the host
PC is not available in StandAlone mode to issue a command to start scopes.

3 Ensure that the Scope type field is Target or File.

4 Save the model.

Your next task is to create a kernel/target application. See “Creating a
Kernel/Target Application” on page 4-21.

Stand-Alone Target Sefup

Creating a Kernel/Target Application

Use xPC Target with StandAlone mode to create a combined kernel and target
application with utility files. A combined kernel and target application allows
you to disconnect your target PC from a host PC and run stand-alone
applications.

After you set the Simulink and Real-Time Workshop parameters for code
generation with xPC Target in your Simulink model, you can use xPC Target
with StandAlone mode to create a target application:

1 In the MATLAB window, type the name of a Simulink model. For example,
type
xpc_osc3

A Simulink window opens with the model.

2 From the Tools menu, point to Real-Time Workshop, and then click Build
Model.

Real-Time Workshop and xPC Target create a directory xpc_osc3_xpc_emb
with the following files:

= autoexec.bat — This file is automatically invoked by DOS. It then runs
xpcboot.com and the *. rtb file.

= xpc_osc3.rtb — This image contains the xPC Target kernel and your
target application.

= xpcboot.com — This file is a static file that is part of xPC Target
Embedded Option.

3 Copy the preceding files to a formatted 3.5 inch disk.

4 If you want to boot the target PC from the 3.5 inch disk,
a Remove the 3.5 inch disk from the host PC.

b Put that disk into the target PC disk drive.

4-21

4 tibedded Option

4-22

¢ Reboot the target PC. DOS is booted from the target boot disk and the
autoexec.bat files, resulting in the automatic execution of the xPC
Target loader. From this point onward, the CPU runs in protected mode
and DOS is discarded.

If you want to boot the target PC from flash memory instead of the 3.5 inch
disk, see “Copying the Kernel to Flash Memory” on page 4-14 for a
description of how to copy the kernel to flash memory. The same procedure
works with flash disks and other boot devices.

Copying the Kernel/Target Application to Flash Disk

You build a target application on a host PC using Real-Time Workshop,
xPC Target, and a C/C++ compiler. One method for transferring the files from
the host PC to a target PC is to use an external 3.5 inch disk drive.

After you build a stand-alone application on a host PC, you can copy files from
a 3.5 inch disk to the flash disk. If you have not already copied the necessary
files to a 3.5 inch disk, see “Creating a Kernel/Target Application” on page 4-21.

If there is a 3.5 inch disk in the target PC external disk drive, remove it. On
the target PC, press the Reset button.

Halt the boot process and bring up the DOS prompt. For example, if you see
the message for selecting the operating system to start, select Microsoft
Windows.

The boot process is stopped and a DOS prompt is displayed.

Insert the 3.5 inch disk with the stand-alone application and utility files into
the external 3.5 inch disk drive of the target PC.

Type
copy A:\xpc_osc3.rtb C:\work
copy A:\xpchboot.com C:\work
copy A:\autoexec.bat C:\work

If you want your stand-alone application to run when you press the Reset
button on your target PC, save a copy of the file C: \autoexec.bat to a
backup file, such as C: \autoexec_back.wrk.

Stand-Alone Target Sefup

6 Edit the file C:\autoexec.bat to include the following lines. Adding these
commands to C:\autoexec.bat directs the system to execute the
autoexec.bat file located in C: \work.

cd C:\work
autoexec

Note Do not confuse C: \work\autoexec.bat with C:\autoexec.bat. The file
C:\work\autoexec.bat includes the command xpcboot.com to start the xPC
Target kernel and stand-alone application. The file C: \autoexec.bat includes
the files you want the system to execute when the system starts up.

7 Remove the 3.5 inch disk, and then, on the target PC, press the Reset
button.

The sequence of calls during the boot process is
a C:\autoexec.bat
b C:\work\autoexec.bat
¢ C:\work\xpcboot.com
d C:\work\<application>.rtb
8 On the target PC keyboard, press the spacebar.

A command line opens on the target PC screen.

For a complete list of target PC commands, see Chapter 6, “Using the Target
PC Command-Line Interface.”.

4-23

4 tibedded Option

4-24

Software Environment
and Demos

The xPC Target environment defines the connections and communication between the host and
target computers. It also defines the build process for a real-time application. You can define the xPC
Target environment through either the MATLAB interface or the xPC Target GUI environment.

xPC Target provides a number of demos that help you understand the product.

Using Environment Properties and Common tasks within the xPC Target software
Functions (p. 5-2) environment
xPC Target Demos (p. 5-8) List of xPC Target demos, accessible from the MATLAB

Command Window

5 Software Environment and Demos

5-2

Using Environment Properties and Functions

Use the xPC Target Explorer window or the MATLAB Command Window to
enter environment properties that are independent of your model. This section
includes the following topics:

® “Getting a List of Environment Properties” on page 5-2

® “Changing Environment Properties with xPC Target Explorer” on page 5-3

¢ “Changing Environment Properties with a Command-Line Interface” on
page 5-6

Refer to the function getxpcenv of the environment properties and functions.

To enter properties specific to your model and its build procedure, see
“Entering the Real-Time Workshop Parameters” on page 3-42. These
properties are saved with your Simulink model.

Getting a List of Environment Properties

To use the xPC Target functions to change environment properties, you need
to know the names and allowed values of these properties. Use the following
procedure to get a list of the property names, their allowed values, and their
current values:

1 In the MATLAB window, type

setxpcenv

MATLAB displays a list of xPC Target environment properties and the
allowed values. For a list of the properties, see the function getxpcenv.
2 Type
getxpcenv
MATLAB displays a list of xPC Target environment properties and the

current values.

Alternatively, you can use the xPC Target Explorer window to view and
change environment properties.

Using Environment Properties and Functions

Changing Environment Properties with xPC Target
Explorer

xPC Target lets you define and change environment properties. These
properties include the path to the C/C++ compiler, the host PC COM port, the
logging buffer size, and many others. Collectively these properties are known
as the xPC Target environment.

To change an environment property using the xPC Target GUI, xPC Target
Explorer, use the following procedure:

1 In the MATLAB window, type

xpcexplr

MATLAB opens the xPC Target Explorer window.

) #PC Target Explorer o] x|
File Taroet Application Tools Help ~

o X E| > = |E| W
| *PC Target Hiearachy (Host PC) Root |

7 = it cen ||[HOSt PC Root Information

o [R) DLMIE) Divwia The Host PC Root is the topmost node in the xPC Target

B TargetPC1 hierarchy. Host configurations and all the xPC Target
- % Configuration applications (DLMs) live under the Host PC Root. Any xPC
o d Communic Target PC systems added to the xPC Target Manager are added

o8 Seftings next to Host PC Root,

[Appearan:
- @ File Spstem

B 5

| Refresh Enabled

Note the contents of the left pane. This is the xPC Target Hierarchy pane.

5-3

5 Software Environment and Demos

5-4

This pane contains all the objects in your xPC Target hierarchy. As you add
objects to your system, xPC Target Explorer adds their corresponding nodes
to the xPC Target Hierarchy pane. The most important node is the HostPC
node. It represents the host PC. The most important node is the TargetPC
node. Each time you add a target PC node to xPC Target Explorer, a
corresponding node is added to the xPC Target Hierarchy pane, starting
with TargetPC1 and incrementing with the addition of each new target PC
node.

The right pane displays information about the an item selected in the left
pane. This pane also displays xPC Target environment properties for the
HostPC and TargetPC nodes. You edit these properties in the right pane.

To change the size of the left or right pane, select and move the divider
between the panes left or right.

The Configuration node under the Target PC node has the property Target
boot mode. If your license does not include the xPC Target Embedded
Option, the Target boot mode box is grayed out, with BootFloppy as your
only selection. With the xPC Target Embedded Option, you have the
additional choices of DOSLoader and StandAlone.

Change properties in the environment in the right pane by entering new
property values in the text boxes or choosing items from the lists.

xPC Target Explorer applies changes to the environment properties as soon
as you make them in the right pane.

To change environment properties for target PCs, see “Configuring
Environment Parameters for Target PCs” on page 5-4.

Configuring Environment Parameters for Target PCs

You can optionally configure the environment parameters for the target PC
node in your xPC Target system. This section assumes that

® You have already added target PC nodes to your system.
® You have already configured the communication parameters between the

host PC and the target PC.

Using Environment Properties and Functions

Note In general, the default values of these parameters are sufficient for you
to use xPC Target.

1 In the xPC Target Explorer, expand a target PC node.

A Configuration node appears. Under this are nodes for Communication,
Settings, and Appearance. The parameters for the target PC node are
grouped in these categories.

2 Select Settings.
The Settings Component pane appears to the right.

3 In the Target RAM size (MB) field, enter

= Auto — The target kernel automatically attempts to determine the
amount of memory.

= Manual — The amount of RAM, in MB, installed on the target PC.

This field defines the total amount of installed RAM in the target PC. The
RAM is used for the kernel, target application, data logging, and other
functions that use the heap.

4 From the Maximum model size list, select either 1 MB, 4 MB, or 16 MB.
Choosing the maximum model size reserves the specified amount of memory
on the target PC for the target application. The remaining memory is used
by the kernel and by the heap for data logging.

5 By default, the Support secondary IDE controller check box is not
selected. Select this check box only if you want to use the disks connected to
a secondary IDE controller. If you do not have disks connected to the
secondary IDE controller, do not select this check box.

6 In the xPC Target Hierarchy, select Appearance.

The Appearance Component pane appears to the right.

5-5

5 Software Environment and Demos

5-6

7 From the Target scope list, select either Enabled or Disabled. The property
Target scope is set by default to Enabled. If you set Target scope to
Disabled, the target PC displays information as text. To use all the features
of the target scope, you also need to install a keyboard and mouse on the
target PC.

8 Set the Target scope property to Enabled.

9 Target mouse allows you to disable or enable mouse support on the target
PC. From the Target mouse list, select None, PS2, RS232 COM1, or RS232
com2.

Changing Environment Properties with a
Command-Line Interface

xPC Target lets you define and change different properties. These properties
include the path to the C/C++ compiler, the host COM port, the logging buffer
size, and many others. Collectively these properties are known as the xPC
Target environment.

You can use the command-line functions to write an M-file script that accesses
the environment settings according to your own needs. For example, you could
write an M-file that switches between two targets.

The following procedure shows how to change the COM port property for your
host PC from COM1 to COMZ2:

1 In the MATLAB window, type
setxpcenv('RS232HostPort', 'COM2")

The up-to-date column shows the values that you have changed, but have
not updated.

HostTargetComm :RS232 up to date
RS232HostPort :COMA com2
RS232Baudrate 1115200 up to date

Making changes using the function setxpcenv does not change the current
values until you enter the update command.

Using Environment Properties and Functions

2 In the MATLAB window, type

updatexpcenv

The environment properties you changed with the function setxpcenv
become the current values.

HostTargetComm :RS232 up to date
RS232HostPort :COM2 up to date
RS232Baudrate 1115200 up to date

5-7

5 Software Environment and Demos

xPC Target Demos

The xPC Target demos are used to demonstrate the features of xPC Target. But
they are also M-file scripts that you can view to understand how to write your
own scripts for creating and testing target applications.

Demo Filename
Parameter Sweep parsweepdemo
Signal tracing using free-run mode scfreerundemo
Signal tracing using software triggering scsoftwaredemo
Signal tracing using signal triggering scsignaldemo
Signal tracing using scope triggering scscopedemo
Signal tracing using the target scope tgscopedemo
Pre-/posttriggering of xPC Target scopes scprepostdemo
Time- and value-equidistant data logging dataloggingdemo

To Locate or Edit a Demo Script

1 In the MATLAB Command Window, type

which scfreerundemo

MATLAB displays the location of the M-file.
D:\MATLAB\toolbox\rtw\targets\xpc\xpcdemos\scfreerundemo.m

2 Type

edit scfreerundemo

MATLAB opens the M-file in a MATLAB editing window.

5-8

Using the Target PC
Command-Line Interface

You can interact with the xPC Target environment through the target PC command window. xPC
Target provides a limited set of commands that you can use to work with the target application after
it has been loaded to the target PC, and to interface with the scopes for that application.

Target PC Command-Line Interface Enter commands on the target PC for stand-alone
(p. 6-2) applications that are not connected to the host PC

6 Using the Target PC Command-Line Inferface

6-2

Target PC Command-Line Interface

This interface is useful with stand-alone applications that are not connected to
the host PC. You can type commands directly from a keyboard on the target PC.
As you start to type at the keyboard, a command window appears on the target
PC screen. This section includes the following topics:

¢ “Using Target Application Methods on the Target PC” on page 6-2

® “Manipulating Target Object Properties from the Target PC” on page 6-3

® “Manipulating Scope Objects from the Target PC” on page 6-4

e “Manipulating Scope Object Properties from the Target PC” on page 6-6

® “Aliasing with Variable Commands on the Target PC” on page 6-6

For a complete list of target PC commands, refer to Chapter 13, “Target PC
Commands.”

Using Target Application Methods on the Target PC

xPC Target uses an object-oriented environment on the host PC with methods
and properties. While the target PC does not use the same objects, many of the
methods on the host PC have equivalent target PC commands. The target PC
commands are case sensitive, but the arguments are not.

After you have created and downloaded a target application to the target PC,
you can use the target PC commands to run and test your application:

1 On the target PC, press C.

The target PC command window is activated, and a command line opens. If
the command window is already activated, do not press C. In this case,
pressing C is taken as the first letter in a command.

2 In the Cmd box, type a target PC command. For example, to start your
target application, type

start

3 To stop the application, type
stop

Target PC Command-line Interface

Once the command window is active, you do not have to reactivate it before
typing the next command.

Manipulating Target Object Properties from the
Target PC
xPC Target uses a target object to represent the target kernel and your target

application. This section shows some of the common tasks that you use with
target objects and their properties.

These commands create a temporary difference between the behavior of the
target application and the properties of the target object. The next time you
access the target object, the properties are updated from the target PC.

On the target PC keyboard, press C, or point the target mouse in the
command window.

The target PC activates the command window.

Type a target command. For example, to change the frequency of the signal
generator (parameter 1) in the model xpcosc, type

setpar 1=30

The command window displays a message to indicate that the new
parameter has registered.

System: p[1] is set to 30.00000

Check the value of parameter 1. For example, type
p1

The command window displays a message to indicate that the new
parameter has registered.

System: p[1] is set to 30.00000

Check the value of signal 0. For example, type
s0

6-3

6 Using the Target PC Command-Line Inferface

6-4

The command window displays a message to indicate that the new
parameter has registered.

System: SO has value 5.1851

5 Change the stop time. For example, to set the stop time to 1000, type
stoptime = 1000

The parameter changes are made to the target application but not to the
target object. When you type any xPC Target command in the MATLAB
Command Window, the target PC returns the current properties of the
target object.

Note The target PC command setpar does not work for vector parameters.

To see the correlation between a parameter or signal index and its block, you
can look at the model_name_pt.c or model_name_bio.c of the generated code
for your target application.

Manipulating Scope Objects from the Target PC

xPC Target uses a scope object to represent your target scope. This section
shows some of the common tasks that you use with scope objects.

These commands create a temporary difference between the behavior of the
target application and scope object. The next time you access the scope object,
the data is updated from the target PC.

1 On the target PC keyboard, press C, or point the target mouse in the
command window.

The target PC activates the command window.

Target PC Command-line Interface

2 Type a scope command. For example, to add a target scope (scope 2) in the
model xpcosc, type

addscope 2

xPC Target adds another scope monitor to the target PC screen. The
command window displays a message to indicate that the new scope has
registered.

Scope: 2, created, type is target SO
3 Type a scope command. For example, to add a signal (0) to the new scope,

type
addsignal 2=0

The command window displays a message to indicate that the new
parameter has registered.

Scope: 2, signal 0 added
You can add as many signals as necessary to the scope.

4 Type a scope command. For example, to start the scope 2, type

startscope 2

The target scope 2 starts and displays the signals you added in the previous
step.

Note If you add a target scope from the target PC, you need to start that
scope manually. If a target scope is in the model, starting the target
application starts that scope automatically.

6-5

6 Using the Target PC Command-Line Inferface

6-6

Manipulating Scope Object Properties from the
Target PC

This section shows some of the common tasks that you use with target objects
and their properties.

These commands create a temporary difference between the behavior of the
target application and the properties of the target object. The next time you
access the target object, the properties are updated from the target PC.

1 On the target PC keyboard, press C, or point the target mouse in the
command window.

The target PC activates the command window.
2 Type a scope property command. For example, to change the number of
samples (1000) to acquire in scope 2 of the model xpcosc, type
numsamples 2=1000
3 Type a scope property command. For example, to change the scope mode
(numerical) of scope 2 of the model xpcosc, type

scopemode 2=numerical

The target scope 2 display changes to a numerical one.

Aliasing with Variable Commands on the Target PC

Use variables to tag (or alias) unfamiliar commands, parameter indices, and
signal indexes with more descriptive names.

After you have created and downloaded a target application to the target PC,
you can create target PC variables.

1 On the target PC keyboard, type a variable command. For example, if you
have a parameter that controls a motor, you could create the variables on
and off by typing

setvar on = p7 = 1
setvar off = p7 =0

The target PC command window is activated when you start to type, and a
command line opens.

Target PC Command-line Interface

2 Type the variable name to run that command sequence. For example, to turn
the motor on, type

on

The parameter P7 is changed to 1, and the motor turns on.

6-7

6 Using the Target PC Command-Line Inferface

Working with Target PC
Files and File Systems

xPC Target scopes of type file create files on the target PC. To work with these files from the host
PC, you need to work with the xpctarget.ftp and xpctarget.fs objects. The xpctarget.ftp object
allows you to perform basic file transfer operations on the target PC file system. The xpctarget.fs
object allows you to perform file system-like operations on the target PC file system. This chapter
contains the following topics:

Introduction (p. 7-2) Introduction to the xpctarget.ftp and xpctarget.fs
objects

FTP and File System Objects (p. 7-4) Description of FTP and file system objects

Using xpctarget.ftp Objects (p. 7-5) Using the MATLAB Command Window with file transfer
object methods to access the target PC files from the host
PC

Using xpctarget.fs Objects (p. 7-9) Using the MATLAB Command Window with file system
methods to access the target PC file system from the host
PC

7 Working with Target PC Files and File Systems

Introduction

The xPC Target scope object of type file always writes acquired signal data to
a file on the target PC. You cannot direct the scope to write the data to a file on
the xPC Target host PC. Once xPC Target has written the signal data file to
the target PC, you can access the contents of the file for plotting or other
inspection from the host PC. xPC Target can write data files to

® The C:\ or D:\ drive of the target PC. This must be an Integrated Device
Electronics (IDE) drive, configured as a primary master. xPC Target
supports file systems of type FAT-12, FAT-16, or FAT-32.

e A 3.5 inch disk drive.

The largest single file that you can create is 4 GB.

Note that writing data files to 3.5 inch disk drives is considerably slower than
writing to hard drives.

You can access signal data files, or any target PC system file, in one of the
following ways:

¢ Ifyou are running the target PC as a stand-alone system, you can access that
file by rebooting the target PC under an operating system such as DOS and
accessing the file through the operating system utilities.

e If you are running the target PC in conjunction with a host PC, you can
access the target PC file from the host PC by representing that file as an
xpctarget. ftp object. Through the MATLAB interface, use xpctarget.ftp
methods on that FTP object. The xpctarget.ftp object methods are file
transfer operations such as get and put.

¢ If you are running the target PC in conjunction with a host PC, you can
access the target PC file from the host PC by representing the target PC file
system as an xpctarget.fs object. Through the MATLAB interface, use the
xpctarget.fs methods on the file system and perform file system-like
methods such as fopen and fread on the signal data file. These methods
work like the MATLAB file I/O methods. The xpctarget.fs methods also
include file system utilities that allow you to collect target PC file system
information for the disk and disk buffers.

Introduction

This chapter describes procedures on how to use the xpctarget.ftp and
xpctarget.fs methods for common operations. See Chapter 14, “Function
Reference,” for a reference of the methods for these objects.

Note This section focuses primarily on working with the target PC data files
that you generate from an xPC Target scope object of type file.

7-3

7 Working with Target PC Files and File Systems

7-4

FTP and File System Objects

xPC Target uses two objects, xpctarget.ftp and xpctarget.fs (file system),
to work with files on a target PC. You use the xpctarget. ftp object to perform
file transfer operations between the host and target PC. You use the
xpctarget.fs object to access the target PC file system. For example, you can
use an xpctarget.fs object to open, read, and close a signal data file created
by an xPC Target scope of type file.

Note This feature provides FTP-like commands, such as get and put.
However, it is not a standard FTP implementation. For example, xPC Target
does not support the use of a standard FTP client.

To create an xpctarget.ftp object, use the FTP object constructor function
xpctarget.ftp. In the MATLAB Command Window, type f = xpctarget.ftp.

xPC Target uses a file system object on the host PC to represent the target PC
file system. You use file system objects to work with that file system from the
host PC.

To create an xpctarget.fs object, use the FTP object constructor function
xpctarget.fs. In the MATLAB window, type f = xpctarget.fs.

Both xpctarget.ftp and xpctarget.fs belong to the xpctarget.fsbase
object. This object encompasses the methods common to xpctarget.ftp and
xpctarget.fs. xPC Target creates the xpctarget.fsbase object when you
create either an xpctarget.ftp or xpctarget.fs object.

Using xpctarget.fip Objects

Using xpctarget.ftp Objects

The xpctarget.ftp object enables you to work with any file on the target PC,
including the data file that you generate from an xPC Target scope object of
type file. The xpctarget. ftp object has methods that allow you to use

¢ cd to change directories

® dir to list the contents of the current directory

® get (ftp) to retrieve a file from the target PC to the host PC

® mkdir to make a directory

® put to place a file from the host PC to the target PC

® pwd to get the current working directory path

® rmdir to remove a directory

The procedures in this section assume that the target PC has a signal data file
created by an xPC Target scope of type file. This file has the pathname
C:\data.dat. See “Simulink Model” in Chapter 3 of the getting started

documentation and “Signal Tracing with xPC Target Scope Blocks” in Chapter
3 of this document for additional details.

This section includes the following topics:

® “Accessing Files on a Specific Target PC” on page 7-5

¢ “Listing the Contents of the Target PC Directory” on page 7-6

¢ “Retrieving a File from the Target PC to the Host PC” on page 7-7
® “Copying a File from the Host PC to the Target PC” on page 7-8

xPC Target also provides methods that allow you to perform file system-type
manipulations, such as opening and reading files. For a complete list of these
methods, see “Using xpctarget.fs Objects” on page 7-9.

Accessing Files on a Specific Target PC

You can access specific target PC files from the host PC for the xpctarget.ftp
object.

Use the xpctarget. ftp creator function. If your system has multiple targets,
you can access specific target PC files from the host PC for the xpctarget.ftp
object.

7 Working with Target PC Files and File Systems

7-6

For example, to list the name of the current directory of a target PC through a
TCP/IP connection,

1 In the MATLAB window, type a command like the following to assign the
xpctarget.ftp object to a variable.
f=xpctarget.ftp('TCPIP','192.168.0.1','22222");

2 Type
f.pwd;

Alternatively, you can use the xpctarget.xpc constructor to first construct a
target object, then use that target object as an argument to xpctarget.ftp.

1 In the MATLAB window, type a command like the following to assign the
xpctarget.xpc object to a variable.
tg1=xpctarget.xpc('TCPIP','192.168.0.1"','22222");
2 Type the following command to assign the xpctarget.ftp object to the tg1
target object variable.
f=xpctarget.ftp(tgl);

Alternatively, if you want to work with the files of the default target PC, you
can use the xpctarget.ftp constructor without arguments.

1 In the MATLAB window, type a command like the following to assign the
xpctarget.ftp object to a variable.
f=xpctarget.ftp;

xPC Target assigns the f variable to the default target PC.

Listing the Contents of the Target PC Directory

You can list the contents of the target PC directory by using xPC Target
methods on the host PC for the xpctarget.ftp object. Use the method syntax
to run an xpctarget.ftp object method:

method_name(ftp_object)

Using xpctarget.fip Objects

Note You must use the dir(f) syntax to list the contents of the directory. To
get the results in an M-by-1 structure, use a syntax like y=dir(f). See the dir
method reference for further details.

For example, to list the contents of the C:\ drive,
1 In the MATLAB window, type the following to assign the xpctarget.ftp
object to a variable:

f=xpctarget.ftp;

2 Type
f.pwd

This gets the current directory. You get a result like the following:
ans =
C:\
3 Type the following to list the contents of this directory:
dir(f)

Retrieving a File from the Target PC to the Host PC

You can retrieve a copy of a data file from the target PC by using xPC Target
methods on the host PC for the xpctarget.ftp object.

Use the method syntax to run an xpctarget.ftp object method. The syntax
method _name(ftp_object, argument list) can be replaced with

ftp_object.method _name(argument_list)
For example, to retrieve a file named data.dat from the target PC C:\ drive
(default),
1 Ifyou have not already done so, in the MATLAB window, type the following
to assign the xpctarget.ftp object to a variable.

f=xpctarget.ftp;

7-7

7 Working with Target PC Files and File Systems

2 Type
f.get('data.dat');

This retrieves the file and saves that file to the variable data. This content
is in the xPC Target file format.

Copying a File from the Host PC to the Target PC

You can place a copy of a file from the host PC by using xPC Target methods on
the host PC for the xpctarget.ftp object.

Use the method syntax to run an xpctarget.ftp object method. The syntax
method_name(ftp_object, argument_list) can be replaced with

ftp_object.method_name(argument_list)
For example, to copy a file named data2.dat from the host PC to the target PC
C:\ drive (default),
1 Ifyou have not already done so, in the MATLAB window, type the following
to assign the xpctarget.ftp object to a variable.

f=xpctarget.ftp;

2 Type the following to save that file to the variable data.
f.put('data2.dat');

Using xpctarget.fs Objects

Using xpctarget.fs Objects

The fs object enables you to work with the target PC file system. The fs object
has methods that allow you to use

¢ cd to change directories

® dir to list the contents of the current directory

® diskinfo to get information about the current disk

e fclose to close a file (similar to MATLAB fclose)

e fileinfo to get information about a particular file

® filetable to get information about files in the file system
e fopen to open a file (similar to MATLAB fopen)

® fread to read a file (similar to MATLAB fread)

® fwrite to write a file (similar to MATLAB fwrite)

® getfilesize to get the size of a file in bytes

® mkdir to make a directory

® pwd to get the current working directory path

® removefile to remove a file from the target PC

® rmdir to remove a directory

Useful global utility:

® readxpcfile, to interpret the raw data from the fread method

The procedures in this section assume that the target PC has a signal data file
created by an xPC Target scope of type file. This file has the pathname
C:\data.dat.

This section includes the following topics:

® “Accessing File Systems from a Specific Target PC” on page 7-10

¢ “Retrieving the Contents of a File from the Target PC to the Host PC” on
page 7-11

® “Removing a File from the Target PC” on page 7-13

® “Getting a List of Open Files on the Target PC” on page 7-14

7-9

7 Working with Target PC Files and File Systems

7-10

® “Getting Information about a File on the Target PC” on page 7-15
® “Getting Information about a Disk on the Target PC” on page 7-15
xPC Target also provides methods that allow you to perform file transfer

operations, such as putting files on and getting files from a target PC. For a
description of these methods, see “Using xpctarget.ftp Objects” on page 7-5.

Accessing File Systems from a Specific Target PC

You can access specific target PC files from the host PC for the xpctarget.fs
object.

Use the xpctarget.fs creator function. If your system has multiple targets,
you can access specific target PC files from the host PC for the xpctarget.fs
object.

For example, to list the name of the current directory of a target PC through a
TCP/IP connection,

1 In the MATLAB window, type a command like the following to assign the
xpctarget.fs object to a variable.
fsys=xpctarget.fs('TCPIP','192.168.0.1','22222");

2 Type
fsys.dir;

Alternatively, you can use the xpctarget.xpc constructor to first construct a
target object, then use that target object as an argument to xpctarget.fs.

1 In the MATLAB window, type a command like the following to assign the
xpctarget.xpc object to a variable.
tg1=xpctarget.xpc('TCPIP','192.168.0.1"','22222");
2 Type the following command to assign the xpctarget.fs object to the tg1
target object variable.
fs=xpctarget.fs(tgl);

Alternatively, if you want to work with the file system of the default target PC,
you can use the xpctarget.fs constructor without arguments.

Using xpctarget.fs Objects

1 In the MATLAB window, type a command like the following to assign the
xpctarget.fs object to a variable.

fsys=xpctarget.fs;
xPC Target assigns the fsys variable to the default target PC.

2 Type
fsys.dir;

Retrieving the Contents of a File from the Target PC
to the Host PC

You can retrieve the contents of a data file from the target PC by using xPC
Target methods on the host PC for the xpctarget.fs object.

Use the method syntax to run an xpctarget.fs object method. The syntax
method name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

For example, to retrieve the contents of a file named data.dat from the target
PC C:\ drive (default),

1 Ifyou have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type
h=fsys.fopen('data.dat');

or

h=fopen(fsys, 'data.dat');
This opens the file data.dat for reading and assigns the file identifier to h.

3 Type
data2=fsys.fread(h);

or

7-11

7 Working with Target PC Files and File Systems

data2=fread(fsys,h);

This reads the file data.dat and stores the contents of the file to data2. This
content is in the xPC Target file format.

4 Type
fsys.fclose(h);

This closes the file data.dat.

Before you can view or plot the contents of this file, you must convert the
contents. See “Converting xPC Target File Format Content to Bytes” on
page 7-12.

Converting xPC Target File Format Content to Bytes

If you have xPC Target file format content that you want to view or plot, you
need to convert that content to bytes. xPC Target provides the script
readxpcfile.m to convert xPC Target format content.

This section assumes that you have a variable, data2, that contains data in the
xPC Target file format (see “Retrieving the Contents of a File from the Target
PC to the Host PC” on page 7-11):

1 In the MATLAB window, change directory to the directory that contains the
xPC Target format file.

2 Type

new_data2=readxpcfile(data2);

The readxpcfile script converts the format of data2 from the xPC Target
file format to an array of bytes. It also creates a structure for that file in
new_data2, of which one of the elements is an array of doubles, data. The
data member is also appended with a time stamp vector. All data is returned
as doubles, which represent the real-world values of the original Simulink
signals at the specified times during target execution.

You can view or examine the signal data. You can also plot the data with
plot(new_data2.data).

Using xpctarget.fs Objects

If you are using xPC Target in StandAlone mode, you can extract the data from
the data file if you know the number of signals in the scope. If you know this
number, you can extract the data. Note the following:

¢ Ignore the first 512 bytes of the file. This is file header information.

® After the first 512 bytes, the file stores the signals sequentially as doubles.
For example, assume the scope has three signals, x, y, and z. Assume that
x[0] is the value of x at sample 0, x[1] is the value at sample 1, and so forth,
and t[0], t[1] are the simulation time values at samples 0, 1, and so forth,
respectively. The file saves the data using the following pattern:

x[0] y[O] z[O] t[O] x[1] y[1] z[1] t[1] x[2] y[2] z[2] t[2]...
X[N] y[N] z[N] t[N]

N is the number of samples acquired. The file saves x, y, z, and t as doubles
at 8 bytes each.

Removing a File from the Target PC

You can remove a file from the target PC by using xPC Target methods on the
host PC for the xpctarget.ftp object. If you have not already done so, close
this file first with fclose.

Use the method syntax to run an xpctarget.fs object method. The syntax
method _name(fs_object, argument_list) can be replaced with

fs_object.method name(argument_list)

For example, to remove a file named data2.dat from the target PC C:\ drive
(default),

1 Ifyou have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type the following to remove the specified file from the target PC.

fsys.removefile('data2.dat');

or

removefile(fsys, 'data2.dat');

7-13

7 Working with Target PC Files and File Systems

Getting a List of Open Files on the Target PC

You can get a list of open files on the target PC file system from the host PC by
using xPC Target methods on the host PC for the xpctarget. fs object. Do this
to ensure you do not have files open unnecessarily. The target PC file system
limits the number of open files you can have to eight.

Use the method syntax to run an xpctarget.fs object method. The syntax
method _name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

For example, to get a list of open files for the file system object fsys,

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type
fsys.filetable

If the file system has open files, a list like the following is displayed:

ans =

Index Handle Flags FilePos Name
0 00060000 R__ 8512 C:\DATA.DAT
1 00080001 R__ 0 C:\DATA1.DAT
2 000A0002 R__ 8512 C:\DATA2.DAT
3 00000003 R__ 8512 C:\DATA3.DAT
4 001E0001 R 0 C:\DATA4.DAT

3 The table returns the open file handles in hexadecimal. To convert a handle
to one that other xpctarget.fs methods, such as fclose, can use, use the
hex2dec function. For example,

h1 = hex2dec('001E0001"'))
hi =
1966081

4 To close that file, use the xpctarget.fs fclose method. For example,

fsys.fclose(h1);

Using xpctarget.fs Objects

Getting Information about a File on the Target PC

You can display information for a file on the target PC file system from the host
PC by using xPC Target methods on the host PC for the xpctarget.fs object.

Use the method syntax to run an xpctarget.fs object method. The syntax
method _name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)
For example, to display the information for the file identifier fid1,
1 Ifyou have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type
fidi=fsys.fopen('data.dat');

This opens the file data.dat for reading and assigns the file identifier to
fid1.

3 Type
fsys.fileinfo(fid1);

This returns disk information like the following for the C:\ drive file system.

ans =
FilePos: O
AllocatedSize: 12288
ClusterChains: 1
VolumeSerialNumber: 1.0450e+009
FullName: 'C:\DATA.DAT'

Getting Information about a Disk on the Target PC

You can display information for a disk on the target PC file system from the
host PC by using xPC Target methods on the host PC for the xpctarget.fs
object.

7-15

7 Working with Target PC Files and File Systems

7-16

Use the method syntax to run an xpctarget.fs object method. The syntax
method name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

For example, to display the disk information for the C:\ drive,

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type
fsys.diskinfo('C:\"');

This returns disk information like the following for the C:\ drive file system.

ans =
Label: 'SYSTEM '
DriveLetter: 'C'
Reserved: ''
SerialNumber: 1.0294e+009
FirstPhysicalSector: 63
FATType: 32
FATCount: 2
MaxDirEntries: 0
BytesPerSector: 512
SectorsPerCluster: 4
TotalClusters: 2040293
BadClusters: 0
FreeClusters: 1007937
Files: 19968
FileChains: 22480
FreeChains: 1300
LargestFreeChain: 64349

Graphical User Interfaces

You can run and test your target application using the MATLAB command-line interface or the
Simulink block diagram for your application. You can also use special blocks provided with xPC
Target to interface signals and parameters from a target application to a custom GUI application.
This chapter includes the following sections:

xPC Target Interface Blocks to Overview describing the software products you can use
Simulink Models (p. 8-2) with the To xPC Target and From xPC Target blocks

8 Graphical User Interfaces

xPC Target Interface Blocks to Simulink Models

You can use Simulink to create a custom graphical user interface (GUI) for
your xPC Target application. You do this by creating an user interface model
with Simulink and add-on products like the Virtual Reality Blockset and Altia
Design (a third-party product). This section includes the following topics:

¢ Simulink User Interface Model — Simulink model with xPC Target
interface blocks to your target application and interface blocks to graphical
elements and interfaces.

¢ Creating a Custom Graphical Interface — The process for creating a
custom graphical interface includes tagging parameters and signals, and
then creating a Simulink user interface model with interface blocks to these
parameters and signals.

¢ To xPC Target Block — Simulink blocks that take new parameter values
from graphical elements and download those values to your target
application.

* From xPC Target Block — Simulink blocks that upload signal data from
your target application and pass that data to graphical elements for
visualization.

Simulink User Interface Model

A user interface model is a Simulink model containing Simulink blocks from
add-on products and interface blocks from xPC Target. This user interface
model can connect to a custom graphical interface using Virtual Reality
Toolbox or Altia products. The user interface model runs on the host PC and
communicates with your target application running on the target PC using To
xPC Target and From xPC Target blocks.

The user interface allows you to change parameters by downloading them to
the target PC, and to visualize signals by uploading data to the host PC.

Virtual Reality Toolbox — The Virtual Reality Toolbox enables you to display
a Simulink user interface model in 3-D. It provides Simulink blocks that
communicate with xPC Target interface blocks. These blocks then
communicate to a graphical interface. This graphical interface is a Virtual
Reality Modeling Language (VRML) world displayed with a Web browser using
a VRML plug-in.

xPC Target Inferface Blocks to Simulink Models

Altia Design — Altia also provides Simulink blocks that communicate with
xPC Target interface blocks. These blocks then communicate with Altia’s
graphical interface or with a Web browser using the Altia ProtoPlay plug-in.

Host PC Target PC
S
User interface |~
XPC Target H————
blocks interface Parameters
blocks D —
S
Signals
—
Simulink xPC Target
instrumentation application

model

Creating a Custom Graphical Interface

xPC Target provides Simulink interface blocks to connect graphical interface
elements to your target application. The steps for creating your own custom
user interface are listed below:

1 In the Simulink target application model, decide which block parameters
and block signals you want to have access to through graphical interface
control devices and graphical interface display devices.

2 Tag all block parameters in the Simulink model that you want to be
connected to a control device. See “Marking Block Parameters” on page 8-8.

3 Tag all signals in Simulink model that you want to be connected to a display
device. See “Marking Block Signals” on page 8-10.

4 In MATLAB, run the function xpcsliface('model name') to create the
user interface template model. This function generates a new Simulink
model containing only the xPC Target interface blocks (To xPC Target and
From xPC Target) defined by the tagged block parameters and block signals
in the target application model.

8 Graphical User Interfaces

5 To the user interface template model, add Simulink interface blocks from
add-on products (Virtual Reality Toolbox, Altia Design).

= You can connect Altia blocks to the xPC Target To PC Target interface
blocks. To xPC Target blocks on the left should be connected to control
devices.

= You can connect Altia and Virtual Reality Toolbox blocks to the xPC
Target From PC Target interface blocks. From xPC Target blocks on the
right should be connected to the display devices.

You can position these blocks to your liking.

6 Start both the xPC target application and the Simulink user interface model
that represents the xPC Target application.

xPC Target Interface Blocks to Simulink Models

To xPC Target Block

This block behaves as a sink and usually receives its input data from a control
device. The purpose of this block is to write a new value to a specific parameter
on the target application.

Host PC Target PC
Control device To xPC Target »|| Parameter
block block
Simulink instrumentation model xPC Target application

This block is implemented as an M-file S-function. The block is optimized so
that it only changes a parameter on the target application when the input
value differs from the value that existed at the last time step. This block uses
the parameter downloading feature of the xPC command-line interface. This
block is available from the xpclib/Misc block sublibrary. See “To xPC Target”
on page 34-12 in the xPC Target I/O reference documentation for further
configuration details.

=)Block Parameters: To #PC Target 7=

—dng2rpe [mask] (link]

—Parameters
#PC Target application name:

1

Path ta block in target application:
| block:

Parameter name:

Iparameter

OF. I LCancel Help Apply

8-5

8 Graphical User Interfaces

Note The use of To xPC Target blocks require a connection between the host
and target PC. If there is no connection between the host and target PC,
operations such as opening a model that contains these blocks or copying
these blocks within or between models, will take significantly longer than
normal.

Block Parameters

xPC Target application name — The function xpcsliface automatically
enters a name entry for this parameter. It is the same name as the Simulink
model that xPC Target uses to build the target application.

Path to block in model running on xPC target — The function xpcsliface
automatically enters an entry for this parameter and uses it to access the block
identifier.

Parameter name — The function xpcsliface automatically determines the
entry for this parameter and enters it. Note that the parameter name might
not match the label name for that parameter in the Block Parameters dialog
box. For example, the label name for a gain block is Constant value, but the
parameter name is Value.

From xPC Target Block

This block behaves like a source and its output is usually connected to the input
of a display device.

Host PC Target PC
Display device From xPC Target ¢ .
[block ’ I ‘ block Signal
Simulink instrumentation model xPC Target application

Because only one numerical value per signal is uploaded during a time step,
the number of samples of a scope object is set to 1. The block uses the signal
tracing capability of the xPC Target command-line interface and is
implemented as an M-file S-function. This block is available from the

8-6

xPC Target Interface Blocks to Simulink Models

xpclib/Misc sublibrary. See “From xPC Target” on page 34-10 in the xPC
Target I/0 reference documentation for further configuration details.

[Z)Block Parameters: From xPC Target |

—upc2dng [maszk] (link)

—Parameters
%PC Target application name:

Signal name [block name):
block

Obzerver sample time:

1

Ok LCancel | Help |

Note The use of From xPC Target blocks require a connection between the
host and target PC. If there is no connection between the host and target PC,
operations such as opening a model that contains these blocks or copying
these blocks within or between models, will take significantly longer than
normal.

Block Parameters

xPC Target application name — The function xpcsliface automatically
enters a name entry for this parameter. It is the same name as the Simulink
model that xPC Target uses to build the target application.

Signal name (block name) — The function xpcsliface automatically enters
a name entry for this parameter.

Observer sample time — The function xpcsliface automatically enters the
sample time for the Simulink block with this signal. It can be equal to the
model base sample time or a multiple of the base sample time.

8-7

8 Graphical User Interfaces

8-8

Creating a Target Application Model

A target application model is a Simulink model that describes your physical
system, a controller, and its behavior. You use this model to create a real-time
target application, and you use this model to select the parameters and signals
you want to connect to a custom graphical interface.

Creating a target application model is the first step you need to do before you
can tag block parameters and block signals for creating a custom graphical
interface.

See “Marking Block Parameters” on page 8-8 and “Marking Block Signals” on
page 8-10 for descriptions of how to mark block properties and block signals.

Marking Block Parameters

Tagging parameters in your Simulink model allows the function xpcsliface to
create To xPC Target interface blocks. These interface blocks contain the
parameters you connect to control devices in your user interface model.

After you create a Simulink model, you can mark the block parameters. This
procedure uses the model xpctank.mdl as an example.
1 Open a Simulink model. For example, in the MATLAB Command Window,
type
xpctank

2 Point to a Simulink block, and then right-click.

3 From the menu, click Block Properties. Do not click Constant
Parameters.

Cuk

Copy
Delete

Caonstant Parameters. ..

Block Properties. ..

A Block properties dialog box opens.

xPC Target Inferface Blocks to Simulink Models

4 In the Description box, delete the existing tag and enter a tag to the
parameters for this block.

For example, the SetPoint block is a constant with a single parameter that
selects the level of water in the tank. Enter the tag shown below.

Description:
PCTag(1)=water_leved| 1 =]
|
The tag has the following format syntax
xPCTag(1, . . . index_n)= label 1 . . . label n;

For single dimension ports, the following syntax is also valid:

xPCTag=1abel;

index_n — Index of a block parameter. Begin numbering parameters with
an index of 1.
label _n — Name for a block parameter that will be connected to a To xPC
Target block in the user interface model. Separate the labels with a space,
not a comma.

label_1...label_ n must consist of the same identifiers as those used by
C/C++ to name functions, variables, and so forth. Do not use names like
-foo.

5 Repeat steps 1 through 3 for the remaining parameters you want to tag.

For example, for the Controller block, enter the tag

8-9

8 Graphical User Interfaces

Description:

PCTagl1 2 3=upper_water_level lower _water_lenvel pump_flowrate;| d

|

For the PumpSwitch and ValveSwitch blocks, enter the following tags
respectively:
xPCTag(2)=pump_switch;
xPCTag(1)=drain_valve;
To create the To xPC blocks in an user interface model for a block with four
properties, use the following syntax:
xPCTag(1,2,3,4)=1label_1 label 2 label_3 label 4;
To create the To xPC blocks for the second and fourth properties in a block
with at least four properties, use the following syntax:
xPCTag(2,4)=1abel_1 label 2;

6 From the File menu, click Save as. Enter a filename for your model. For
example, enter

xpc_tanki

You next task is to mark block signals if you have not already done so, and then
create the user interface template model. See “Marking Block Signals” on
page 8-10 and “Creating a Custom Graphical Interface” on page 8-3.

Marking Block Signals

Tagging signals in your Simulink model allows the function xpcsliface to
create From xPC Target interface blocks. These interface blocks contain the
signals you connect to display devices in your user interface model.

After you create a Simulink model, you can mark the block signals. This
procedure uses the model xpc_tank1.mdl (or xpctank.mdl) as an example. See
“Creating a Target Application Model” on page 8-8.

8-10

xPC Target Inferface Blocks to Simulink Models

Note that you cannot select signals on the output ports of any virtual blocks
such as Subsystem and Mux blocks. Also, you cannot select signals on any
function-call, triggered signal output ports.

1 Open a Simulink model. For example, in the MATLAB Command Window,
type
xpc_tank or xpc_tank1

2 Point to a Simulink signal line, and then right-click.
3 From the menu, click Signal Properties.

Disconnect From Yiewer F
Create Mew Viewer 3

Signal Properties. . k

Linearization Points

A Signal Properties dialog box opens.
4 Select the Documentation tab.
5 In the Description box, enter a tag to the signals for this line.

For example, the block labeled TankLevel is an integrator with a single
signal that indicates the level of water in the tank. Replace the existing tag
with the tag shown below.

8-11

8 Graphical User Interfaces

8-12

E! Signal Properties: (unnamed) ﬂﬂ

Signhal name: I

[™ Signal name must resolve to Simulink signal object

Logging and accessibility I Real-Time Workshop | Documentation |

Dezcription:

wPCT ag(1)=water_level;

Documment Link

0K I LCancel Help Apply

The tag has the following format syntax:
xPCTag(1, . . . index _n)=label 1 . . . label n,;

For single dimension ports, the following syntax is also valid:

XPCTag=label:

= index_n — Index of a signal within a vector signal line. Begin numbering
signals with an index of 1.

= label _n— Name for a signal that will be connected to a From xPC Target
block in the user interface model. Separate the labels with a space, not a
comma.

label_1...label_n must consist of the same identifiers as those used by
C/C++ to name functions, variables, and so forth. Do not use names like
-foo.

To create the From xPC blocks in an user interface model for a signal line
with four signals (port dimension of 4), use the following syntax:
xPCTag(1,2,3,4)=1abel 1 label 2 label 3 label 4;

To create the From xPC blocks for the second and fourth signals in a signal
line with at least four signals, use the following syntax:

xPC Target Inferface Blocks to Simulink Models

xPCTag(2,4)=1abel 1 label_2;

6 From the File menu, click Save as. Enter a filename for your model. For
example, enter

xpc_tank1

You next task is to mark block parameters if you have not already done so. See
“Marking Block Parameters” on page 8-8. If you have already marked block
signals, return to “Creating a Custom Graphical Interface” on page 8-3 for
additional guidance on creating a user interface template model.

8-13

8 Graphical User Interfaces

8-14

xPC Target Web Browser
Interface

xPC Target has a Web server that allows you to interact with your target application through a Web
browser. You can access the Web browser with either a TCP/IP or serial (RS-232) connection. This
chapter includes the following section:

Web Browser Interface (p. 9-2) Connect a target application running on a target PC to
any host PC connected to a network

9 .rc Target Web Browser Interface

Web Browser Interface

xPC Target has a Web server built into the kernel that allows you to interact
with your target application using a Web browser. If the target PC is connected
to a network, you can use a Web browser to interact with the target application
from any host PC connected to the network.

Currently Microsoft Internet Explorer (Version 4.0 or later) and Netscape
Navigator (Version 4.5 or later) are the only supported browsers.

This section includes the following topics:

® “Connecting the Web Interface Through TCP/IP” on page 9-2
® “Connecting the Web Interface Through RS-232” on page 9-3
® “Using the Main Pane” on page 9-6

¢ “Changing WWW Properties” on page 9-9

® “Viewing Signals with a Web Browser” on page 9-10

® “Viewing Parameters with a Web Browser” on page 9-11

® “Changing Access Levels to the Web Browser” on page 9-11

Connecting the Web Interface Through TCP/IP

If your host PC and target PC are connected with a network cable, you can
connect the target application on the target PC to a Web browser on the host
PC.

The TCP/IP stack on the xPC Target kernel supports only one simultaneous
connection, because its main objective is real-time applications. This
connection is shared between MATLAB and the Web browser. This also means
that only one browser or MATLAB is able to connect at one time.

Before you connect your Web browser on the host PC, you must load a target
application onto the target PC. The target application does not have to be
running, but it must be loaded. Also, your browser must have JavaScript and
StyleSheets turned on.

Web Browser Interface

1 In the MATLAB window, type

xpcwwwenable

MATLAB is disconnected from the target PC, and the connection is reset for
connecting to another client. If you do not use this command, your Web
browser might not be able to connect to the target PC.

2 Open a Web browser. In the address box, enter the IP address and port
number you entered in the xPC Target Explorer window. For example, if
the target computer IP address is 192.168.0.1 and the port is 22222, type

http://192.168.0.1:22222/

The browser loads the xPC Target Web interface frame and panes.

Connecting the Web Interface Through RS-232

If the host PC and target PC are connected with a serial cable instead of a
network cable, you can still connect the target application on the target PC to
a Web browser on the host PC. xPC Target includes a TCP/IP to RS-232
mapping application. This application runs on the host PC and writes whatever
it receives from the RS-232 connection to a TCP/IP port, and it writes whatever
is receives from the TCP/IP port to the RS-232 connection. TCP/IP port
numbers must be less than 216 = 65536.

Before you connect your Web browser on the host PC, you must load a target
application onto the target PC. The target application does not have to be
running, but it must be loaded. Also, your Web browser must have JavaScript
and StyleSheets turned on.

1 In the MATLAB window, type

xpcwwwenable or close(xpc)

MATLAB is disconnected from the target PC, leaving the target PC ready to
connect to another client. The TCP/IP stack of the xPC Target kernel

supports only one simultaneous connection. If you do not use this command,
the TCP/IP to RS-232 gateway might not be able to connect to the target PC.

9 .rc Target Web Browser Interface

94

2 Open a DOS command window, and enter the command to start the TCP/IP

to RS-232 gateway. For example, if the target PC is connected to COM1 and
you would like to use the TCP/IP port 22222, type the following:

Cc:\<MATLAB root>\toolbox\rtw\targets\xpc\xpc\bin\xpctcp2ser -v
-t 22222 -c 1

For a description of the xpctep2ser command, see “Syntax for the xpctecp2ser
Command” on page 9-5.

The TCP/IP to RS-232 gateway starts running, and the DOS command
window displays the message

xPC Target TCP/IP to RS-232 gateway *
Copyright 2000 The MathWorks *

Connecting COM to TCP port 22222
Waiting to connect

If you did not close the MATLAB to target application connection, then
xpxtcp2ser displays the message Could not initialize COM port.

Open a Web browser. In the address box, enter
http://localhost:22222/

The Web browser loads the xPC Target Web interface panes.

Using the Web interface, start and stop the target application, add scopes,
add signals, and change parameters.

In the DOS command window, press Ctrl+C.

The TCP/IP to RS-232 Gateway stops running, and the DOS command
window displays the message

interrupt received, shutting down
The gateway application has a handler that responds to Ctrl+C by

disconnecting and shutting down cleanly. In this case, Ctrl+C is not used to
abort the application.

Web Browser Interface

6 In the MATLAB Command Window, type

Xpc

MATLAB reconnects to the target application and lists the properties of the
target object.
If you did not close the gateway application, MATLAB displays the message

Error in ==>
C:\MATLABR13\toolbox\rtw\targets\xpc\xpc\@xpc\xpc.m
On line 31 ==> sync(xpcObj);

You must close MATLAB and then restart it.

Syntax for the xpctcp2ser Command

The xpctcp2ser command starts the TCP/IP to RS-232 gateway. The syntax
for this command is

xpctcp2ser [-v] [-n] [-t tcpPort] [-c comPort]
xpctcp2ser -h

The options are described in the following table.

Command- Description
Line Option

-V Verbose mode. Produces a line of output every time a client
connects or disconnects.

-n Allows nonlocal connections. By default, only clients from
the same computer that the gateway is running on are
allowed to connect. This option allows anybody to connect to
the gateway.

If you do not use this option, only the host PC that is
connected to the target PC with a serial cable can connect to
the selected port. For example, if you start the gateway on
your host PC, with the default ports, you can type in the
Web browser http://localhost:2222. However, if you try
to connect to http://Domainname.com:22222, you will
probably get a connection error.

9-5

9 .rc Target Web Browser Interface

9-6

Command-
Line Option

Description

-t tcpPort

-h

-c comPort

Use TCP port tcpPort. Default t is 22222, For example, to
connect to port 20010, type -t 20010.

Print a help message.

Use COM port comPort (1 <= comPort <= 4). Default is 1.
For example, to use COM2, type -c 2.

Using the Main Pane

The Main pane is divided into four parts, one below the other. The four parts
are System Status, xPC Target Properties, Navigation, and WWW

Properties.

Web Browser Interface

System Status
Application xpeosc
Mod Real-Time

Ztatus Stopped
CPUwverload none

ExzecTime 0.0
SessionTime 88641.1

StopTime 0. 2
SampleTime 0. 00025

1.04013e-
LwgTET 005

Single-Tasking

| Start Execution |

Get State Log |
Get Output Log |
GetTET Log |

xPC Target Properties

Viewhdlode IAII 'l

SampleTime ID.DDDZE
EtopTime ID 2
Apply | Reset |
Navigation

Scopes |
Signals |

Fefresh |
Farameters |

Screen Shot |

WWW Properties

Ilazarmum Signal
Width fn

Eefresh Interval ————

Click any button on the left to navigate

After you connect a Web browser to the target PC, you can use the Main pane
to control the target application:

9-7

9 .rc Target Web Browser Interface

9-8

1 In the left frame, click the Refresh button.

System status information in the top cell is uploaded from the target PC. If
the right frame is either the Signals List pane or the Screen Shot pane,
updating the left frame also updates the right frame.

System Status
Application xpcesc
Real-Time Single-
Tasking
%tatus Stopped
CPUOwvetload none

Mode

ExecTitre 0.0
HessionTime 97769

StopTire 10000
SampleTime 0.00025

AwgTET —-nan

Click the Start Execution button.

The target application begins running on the target PC, the Status line is
changed from Stopped to Running, and the Start Execution button text
changes to Stop Execution.

Update the execution time and average task execution time (TET). Click the
Refresh button. To stop the target application, click the Stop Execution
button.

Enter new values in the StopTime and SampleTime boxes, then click the
Apply button. You can enter -1 or Inf in the StopTime box for an infinite
stop time.

Web Browser Interface

SampleTime ID.DDUEE
StopTime |1DUDU

Apply | Reset |

The new property values are downloaded to the target application. Note that
the SampleTime box is visible only when the target application is stopped.
You cannot change the sample time while a target application is running.

5 Select scopes to view on the target PC. From the ViewMode list, select one
or all of the scopes to view.

Viewhlode | Al -

Note The ViewMode control is visible in the xPC Target Properties pane
only if you add two or more scopes to the target PC.

Changing WWW Properties

The WWW Properties cell in the left frame contains fields that affect the
display on the Web interface itself, and not the application. There are two
fields: maximum signal width to display and refresh interval.

1 In the Maximum Signal Width box enter -1, Inf (all signals), 1 (show only
scalar signals), 2 (show scalar and vector signals less than or equal to 2
wide), or n (show signals with a width less than or equal to n).

Signals with a width greater than the value you enter are not displayed on
the Signals pane.

9-9

9 .rc Target Web Browser Interface

9-10

2 In the Refresh Interval box, enter a value greater than 10. For example,
enter 20.

The signal pane updates automatically every 20 seconds. Entering -1 or Inf
does not automatically refresh the pane.

Sometimes, both the frames try to update simultaneously, or the auto refresh
starts before the previous load has finished. This problem can happen with
slow network connections. In this case, increase the refresh interval or
manually refresh the browser (set the Refresh Interval = Inf).

This can also happen when you are trying to update a parameter or property
at the same time that the pane is automatically refreshing.

Sometimes, when a race condition occurs, the browser becomes confused about
the format, and you might have to refresh it. This should not happen often.

Viewing Signals with a Web Browser
The Signals pane is a list of the signals in your model.

After you connect a Web browser to the target PC you can use the Signals pane
to view signal data:

1 In the left frame, click the Signals button.

The Signals pane is loaded in the right frame with a list of signals and the
current values.

2 On the Signals pane in the right frame, click the Refresh button.

The Signals pane is updated with the current values. Vector/matrix signals
are expanded and indexed in the same column-major format that MATLAB
uses. This can be affected by the Maximum Signal Width value you enter
in the left frame.

3 In the left frame, click the Screen Shot button.

The Sereen Shot pane is loaded and a copy of the current target PC screen
is displayed. The screen shot uses the portable network graphics (PNG) file
format.

Web Browser Interface

Viewing Parameters with a Web Browser

The Parameters pane displays a list of all the tunable parameters in your
model. Row and column indices for vector/matrix parameters are also shown.

After you connect a Web browser to the target PC, you can use the Parameters
pane to change parameters in your target application while it is running in real
time:

1 In the left frame, click the Parameters button.
The Parameter List pane is loaded into the right frame.

If the parameter is a scalar parameter, the current parameter value is
shown in a box that you can edit.

If the parameter is a vector or matrix, press the Edit button to view the
vector or matrix (in the correct shape). You can edit the parameter in this
pane.

2 In the Value box, enter a new parameter value, and then click the Apply
button.

Changing Access Levels to the Web Browser

The Web browser interface allows you to set access levels to the target
application. The different levels limit access to the target application. The
highest level, 0, is the default level and allows full access. The lowest level, 4,
only allows signal monitoring and tracing with your target application.

1 In the Simulink window, click Configuration Parameters.
The Configuration Parameters dialog box for the model is displayed.
2 Click the Real-Time Workshop node.

The Real-Time Workshop pane opens.

9-11

9 .rc Target Web Browser Interface

9-12

3 In the Target selection section, access levels are set in the RTW system
target file box. For example, to set the access level to 1, enter

xpctarget.tlc -axpcWWWAccessLevel=1

The effect of not specifying -axpcWWWAccessLevel is that the highest access
level (0) is set.

4 Click OK.

The various fields disappear, depending on the access level. For example, if
your access level does not allow you access to the parameters, you do not see
the button for parameters.

There are various access levels for monitoring, which allow different levels of
hiding. The proposed setup is described below. Each level builds on the
previous one, so only the incremental hiding of each successive level is
described.

Level 0 — Full access to all panes and functions.

Level 1 — Cannot change the sample and stop times. Cannot change
parameters, but can view parameters.

Level 2 — Cannot start and stop execution of the target application or log data.

Level 3 — Cannot view parameters. Cannot add new scopes, but can edit
existing scopes.

Level 4 — Cannot edit existing scopes on the Scopes pane. Cannot add or
remove signals on the Scopes pane. Cannot view the Signals pane and the
Parameters pane, and cannot get scope data.

Interrupts Versus Polling

xPC Target interrupt mode is the default real-time execution mode for the xPC Target kernel. For
performance reasons, you might want to change the real-time execution mode to polling mode. This
chapter includes the following section:

Polling Mode (p. 10-2) Use polling mode as an alternative to interrupt mode for
reducing latency times with I/O drivers

10 Interrupts Versus Polling

Polling Mode

10-2

A good understanding of polling mode will help you to use it effectively, and a
better understanding of interrupt mode will help you to decide under which
circumstances it makes sense for you to switch to the polling mode. This section
includes the following topics:

¢ “xPC Target Kernel Polling Mode” on page 10-2

® “Interrupt Mode” on page 10-2

® “Polling Mode” on page 10-4

® “Setting the Polling Mode” on page 10-6

® “Restrictions Introduced by Polling Mode” on page 10-9

¢ “Controlling the Target Application” on page 10-12

® “Polling Mode Performance” on page 10-13

xPC Target Kernel Polling Mode

Polling mode for the xPC Target real-time kernel is designed to execute target
applications at sample times close to the limit of the hardware (CPU). Using
polling mode with high-speed and low-latency I/O boards and drivers allows
you to achieve smaller sample times for applications that you cannot achieve
using the interrupt mode of xPC Target.

Polling mode has two main applications:

® Control applications — Control applications of average model size and I/O
complexity that are executed at very small sample times (Ts = 5 to 50 us)

¢ DSP applications — Sample-based DSP applications (mainly audio and
speech) of average model size and I/O complexity that are executed at very
high sample rates (Fs = 20 to 200 kHz)

Interrupt Mode

Interrupt mode is the default real-time execution mode for the xPC Target
kernel. This mode provides the greatest flexibility and is the mode you should
choose for any application that executes at the given base sample time without
overloading the CPU.

The scheduler ensures real-time single-tasking and multitasking execution of
single-rate or multirate systems, including asynchronous events (interrupts).

Polling Mode

Additionally, background tasks like host-target communication or updating
the target screen run in parallel with sample-time-based model tasks. This
allows you to interact with the target system while the target application is
executing in real time at high sample rates. This is made possible by an
interrupt-driven real-time scheduler that is responsible for executing the
various tasks according to their priority. The base sample time task can
interrupt any other task (larger sample time tasks or background tasks) and
execution of the interrupted tasks resumes as soon as the base sample time
task completes operation. This gives a quasi parallel execution scheme with
consideration to the priorities of the tasks.

Latencies Introduced by Interrupt Mode

Compared to other modes, interrupt mode has more advantages. The exception
is the disadvantage of introducing a constant overhead, or latency, that reduces
the minimal possible base sample time to a constant number. The overhead is
the sum of various factors related to the interrupt-driven execution scheme and
can be referred to as overall interrupt latency. The overall latency consists of
the following parts, assuming that the currently executing task is not
executing a critical section and has therefore not disabled any interrupt
sources:

¢ Interrupt controller latency — In a PC-compatible system the interrupt
controller is not part of the x86-compatible CPU but part of the CPU chip set.
The controller is accessed over the I/O-port address space, which introduces
a read or write latency of about 1 us for each 8 bit/16 bit register access.
Because the CPU has to check for the interrupt line requesting an interrupt,
and the controller has to be reset after the interrupt has been serviced, a
latency of about 5 us is introduced to properly handle the interrupt
controller.

¢ CPU hardware latency — Modern CPUs try to predict the next couple of
instructions, including branches, by the use of instruction pipelines. If an
interrupt occurs, the prediction fails and the pipeline has to be fully reloaded.
This process introduces an additional latency. Additionally, because of
interrupts, cache misses will occur.

10-3

10 Interrupts Versus Polling

10-4

¢ Interrupt handler entry and exit latency — Because an interrupt can stop
the currently executing task at any instruction and the interrupted task has
to resume proper execution when the interrupting task completes execution,
its state has to be saved and restored accordingly. This includes saving CPU
data and address registers, including the stack pointer. In the case that the
interrupted task executed floating-point unit (FPU) operations, the FPU
stack has to be saved as well (108 bytes on a Pentium CPU). This introduces
additionally latency.

¢ Interrupt handler content latency — If a background task has been
executing for a longer time, say in a loop, its needed data will be available in
the cache. But as soon as an interrupt occurs and the interrupt service
handler is executed, the data needed in the interrupt handler might no
longer be in the cache, causing the CPU to reload it from slower RAM. This
introduces additional latency. Generally, an interrupt reduces the optimal
execution speed or introduces latency, because of its unpredictable nature.

The xPC Target real-time kernel in interrupt mode is close to optimal for
executing code on a PC-compatible system. However, interrupt mode
introduces an overall latency of about 8 ps. This is a significant amount of time
when considering that a 1 GHz CPU can execute thousands of instructions
within 8 ps. This time is equivalent to a Simulink model containing a hundred
nontrivial blocks. Additionally, because lower priority tasks have to be serviced
as well, a certain amount of headroom (at least 5%) is necessary, which can
cause additional cache misses and therefore nonoptimal execution speed.

Polling Mode

Polling mode for the xPC Target real-time kernel does not have the 8 us of
latency that interrupt mode does. This is because the kernel does not allow
interrupts at all, so the CPU can use this extra time for executing model code.

Polling mode is sometimes seen as a “primitive” or “brute force” real-time
execution scheme. Nevertheless, when a real-time application executes at a
given base sample time in interrupt mode and overloads the CPU, switching to
polling mode is often the only alternative to get the application to execute at
the required sample time.

Polling Mode

Polling means that the kernel waits in an empty while loop until the time at
which the next model step has to be executed is reached. Then the next model
step is executed. At least a counter implemented in hardware has to be
accessible by the kernel in order to get a base reference for when the next model
step execution has to commence. The kernel polls this hardware counter. If this
hardware counter must be outside the CPU, e.g., in the chip set or even on an
ISA or PCI board, the counter value can only be retrieved by an I/O or memory
access cycle that again introduces latency. This latency usually eats up the
freed-up time of polling mode. Fortunately, since the introduction of the
Pentium CPU family from Intel, the CPU is equipped with a 64 bit counter on
the CPU substrate itself, which commences counting at power-up time and
counts up driven by the actual clock rate of the CPU. Even a highly clocked
CPU is not likely to lead to an overflow of a 64 bit counter (2764 * 1e-9 (1 GHz
CPU) = 584 years). The Pentium counter comes with the following features:

¢ Accurate measurements — Because the counter counts up with the CPU
clock rate (~1 GHz nowadays), the accuracy of time measurements even in
the microsecond range is very high, therefore leading to very small absolute
real-time errors.

® No overflow — Because the counter is 64 bits wide, in practical use overflow
does not occur, which makes a CPU time expensive overflow handler
unnecessary.

® No latency — The counter resides on the CPU. Reading the counter value
can be done within one CPU cycle, introducing almost no latency.

The polling execution scheme does not depend on any interrupt source to notify
the code to continue calculating the next model step. While this frees the CPU,
it means that any code that is part of the exclusively running polling loop is
executed in real time, even components, which have so far been executed in
background tasks. Because these background tasks are usually non-real-time
tasks and can use a lot of CPU time, do not execute them. This is the main
disadvantage of polling mode. To be efficient, only the target application’s
relevant parts should be executed. In the case of xPC Target, this is the code
that represents the Simulink model itself.

Therefore, host-target communication and target display updating are
disabled. Because polling mode reduces the features of xPC Target to a
minimum, you should choose it only as the last possible alternative to reach the
required base sample time for a given model. Therefore, ensure the following
before you consider polling mode:

10-5

10 Interrupts Versus Polling

10-6

¢ The model is optimal concerning execution speed — First, you should run
the model through the Simulink profiler to find any possible speed
optimizations using alternative blocks. If the model contains continuous
states, the discretization of these states will reduce model complexity
significantly, because a costly fixed-step integration algorithm can be
avoided. If continuous states cannot be discretized, you should use the
integration algorithm with the lowest order that still produces correct
numerical results.

¢ Use the fastest available computer hardware — Ensure that the CPU
with the highest clock rate available is used for a given PC form factor. For
the desktop form factor, this would mean a clock rate above 1 GHz; for a
mobile application, e.g., using the PC/104 form factor, this would mean a
clock rate above 400 MHz. Most of the time, you should use a desktop PC,
because the highest clocked CPUs are available for this form factor only.
Executing xpcbench at the MATLAB prompt gives an understanding about
the best performing CPUs for xPC Target applications.

¢ Use the lowest latency I/O hardware and drivers available — Many xPC
Target applications communicate with hardware through I/O hardware over
either an ISA or PCI bus. Because each register access to such I/O hardware
introduces a comparably high latency time (~1 us), the use of the lowest
latency hardware/driver technology available is crucial.

¢ The base sample time is about 50 s or less — The time additionally
assigned to model code execution in polling mode is only about 8 us. If the
given base sample time of the target application exceeds about 50 us, the
possible percentage gain is rather small. Other optimization technologies
might have a bigger impact on increasing performance.

Setting the Polling Mode

Polling mode is an alternative to the default interrupt mode of the real-time
kernel. This means that the kernel on the bootable 3.5 inch disk created by the
xpcexplr GUI allows running the target application in both modes without the
necessity to use another boot disk.

By default the target application executes in interrupt mode. To switch to
polling mode, you need to pass an option to the RTW system target file
command. The following example uses xpcosc.mdl.

Polling Mode

1 In the Simulink window, and from the Tools menu, point to Real-Time

Workshop, and then click Options.
The Configuration Parameters dialog box opens.

2 In the left pane, click the Real-Time Workshop node.

E! Configuration Parameters: kpcosc;/Configuration

X

Select: — T arget selection

[~ Generate code anly

- wPC Target options

QK I Cancel Help

-~ Sobver System target file:{xpotarget to Browse... |
- [1ata Import/E xport
- [ptimization Language: | C LI
(- Diagnostics Description: #PC Target
- Sample Time
- [ata Integrity —Diocumentation
Eonvem.on [~ Generate HTML repart
- Connectiviy .
- Compatibility I~ | Launch repart after, code generation completes
- Model Referencing -
- Hardware |mplementation - Build pro
- Model Referencing TLE optians: I
[=-Real-Time Warksho
2 Make command: Imake_rtw
- Comments
- Symbaols Template mak.efile: prc_default_tmf
- Custom Code
- Diebug

Build |

Apply

3 In the TLC options edit field, specify the option
-axpcCPUClockPoll=CPUClockRateMHz

The assignment of the clock rate of the target PC’s CPU is necessary because
the Pentium’s on-chip counter used for polling mode counts up with the CPU
clock rate. If the clock rate is provided, the kernel can convert clock ticks to
seconds and vice versa. If an incorrect clock rate is provided, the target
application executes at an incorrect base sample time. You can find out
about the CPU clock rate of the target PC by rebooting the target PC and
checking the screen output during BIOS execution time. The BIOS usually

10-7

10 Interrupts Versus Polling

10-8

displays the CPU clock rate in MHz right after the target PC has been

powered up.

For example, if your target PC is a 1.2 GHz AMD Athlon, specify option

-axpcCPUClockPo0l1=1200

E! Configuration Parameters: kpcosc;/Configuration

X

Select: — T arget selection

- Solver System target file: prctarget.tlc Browse. .. |
- [1ata Import/E xport
- [ptimization Language: | C LI
(- Diagnostics Description: #PC Target
- Sample Time
- [ata Integrity —Diocumentation
Eonvem.on [~ Generate HTML repart
- Connectiviy .
- Compatibility I~ | Launch repart after, code generation completes
- Model Referencing -
- Hardware |mplementation - Build pro
- Model Referencing TLL aptions: |-axpeCPU ClockPall=1200
[=-Real-Time Warksho
2 Make command: Imake_rtw
- Comments
- Symbaols Template mak.efile: prc_default_tmf
- Custom Code
- Diebug G ;
. enerate code only Build |
- wPC Target options
QK I Cancel | Help | Apply |

If you want to execute the target application in interrupt mode again, either
remove the option or assign a CPU clock rate of 0 to the option:

-axpcCPUClockP0l11=0

If you make a change to the TLC options field, you need to rebuild the target
application for the change to take effect. Building the target application,
downloading it, and preparing it for a run then work exactly the same way as

they did with default interrupt mode.

After the download of the target application has succeeded, the target screen
displays the mode, and if polling mode is activated, it additionally displays the
defined CPU clock rate in MHz. This allows checking for the correct setting.

Polling Mode

Restrictions Introduced by Polling Mode

As explained above, polling mode executes the Simulink-based target
application in real time exclusively. While the target application is executing
in polling mode, the background tasks, mainly the ones for host-target
communication and target screen updating, are inactive. This is because all
interrupts of the target PC are fully disabled during the execution of the target
application. On one hand this ensures the highest polling performance; on the
other hand, as a consequence the background tasks are not serviced.

Here is a list of all relevant restrictions of polling mode, which are otherwise
available in the default interrupt mode.

Host-Target Communication Is Not Available During the Execution of the
Target Application
If the target application execution is started in polling mode, e.g., with

start(tg)

host-target communication is disabled throughout the entire run, or in other
words until the stop time is reached. Each attempt to issue a command like

tg

leads to a communication-related error message. Even the start(tg)
command to start polling mode execution returns such an error message,
because the host side does not receive the acknowledgment from the target
before timing out. The error message when executing start(tg) is not
avoidable. Subsequently, during the entire run, it is best not to issue any
target-related commands on the host, in order to avoid displaying the same
error message over and over again.

As a consequence, it is not possible to issue a stop(tg) command to stop the
target application execution from the host side. The target application has to
reach its set stop time for polling mode to be exited. You can use

tg.stoptime=x

before starting the execution, but once started the application executes until
the stop time is reached.

Nevertheless, there is a way to stop the execution interactively before reaching
the target application stop time. See “Controlling the Target Application” on
page 10-12.

10-9

10 Interrupts Versus Polling

10-10

If the target application execution finally reaches the stop time and polling
mode execution is stopped, host-target communication will begin functioning
again. However, the host-target communication link might be in a bad state. If
you still get communication error messages after polling mode execution stops,
type the command

xpctargetping

to reset the host-target communication link.

After the communication link is working again, type
tg

to resync the target object on the host side with the most current status of the
target application.

Target Screen Does Not Update During the Execution of the Target
Application

As with the restriction mentioned above, target screen updating is disabled
during the entire execution of the target application. Using the kernel with the
Enable target scope option enabled (see xpcexplr GUI) does not work. You
should therefore use the kernel with the Enable target scope property
disabled (text output only). The kernel enabled with text mode actually
provides more information when running in polling mode.

Session Time Does Not Advance During the Execution of the Target
Application

Because all interrupts are disabled during a run, the session time does not
advance. The session time right before and after the run is therefore the same.
This is a minor restriction and should not pose a problem.

The Only Rapid-Prototyping Feature Available Is Data Logging

Because host-target communication and target screen updating are disabled
during the entire run, most of the common rapid-prototyping features of xPC
Target are not available in polling mode. These are

® Parameter tuning — Neither through the command-line interface nor
through External mode

Polling Mode

¢ Signal tracing through scope objects — Neither through scope objects of type
host (xPC Target Explorer or scripts) or type target (scopes on the target
screen if property Enable target scope is enabled)

® Signal monitoring — You cannot run a GUI interface on the host PC using
an environment that depends on communication between the host and target
computers.

® Applications using the xPC Target API
® The Internet browser interface
e Other utilities like xpctargetspy

The only rapid-prototyping feature available is signal logging, because the
acquisition of signal data runs independently from the host, and logged data is
retrieved only after the execution is stopped. Nevertheless, being able to log
data allows gathering good enough information about the behavior of the target
application. Signal logging becomes a very important feature in polling mode.

Multirate Simulink Models Cannot Be Executed in Multitasking Mode on
the Target PC

Because of the polling mode execution scheme, executing Simulink-based
target applications in multitasking mode is not possible. The modeling of
function-call subsystems to handle asynchronous events (interrupts) is not
possible either. This can be a hard restriction, especially for multirate systems.
Multirate systems can be executed in single-tasking mode, but because of its
sequential execution scheme for all subsystems with different rates, the CPU
will most likely overload for the given base sample time. As an important
consequence, polling mode is only a feasible alternative to interrupt mode if the
model has a single rate or if it can be converted to a single-rate model. A
single-rate model implies continuous states only, discrete states only, or mixed
continuous and discrete states, if the continuous and discrete subsystems have
the same rate. Use the Format -> Sample time color feature of Simulink to
check for the single rate requirement. Additionally, set the tasking mode
property in the Simulation menu Configuration Parameters -> Solver pane
to SingleTasking to avoid a possible switch to multitasking mode. For more
information on single-tasking mode compared to multitasking mode, see the
Real-Time Workshop user’s documentation.

10-11

10 Interrupts Versus Polling

10-12

1/0 Drivers Using Kernel Timing Information Cannot Be Used Within a
Model

Some xPC Target drivers use timing information exported from the kernel in
order to run properly, for example, for the detection of time-outs. Because the
standard timing engine of the real-time kernel is not running during the entire
target application execution in polling mode, timing information passed back
to the drivers is incorrect. Therefore, you cannot use drivers importing the
header file time_xpcimport.h. This is a current restriction only. In a future
version of polling mode, all drivers will make use of the Pentium counter for
getting timing information instead.

Controlling the Target Application

As mentioned, there is no way to interact with the running target application
in polling mode. This is especially restrictive for the case of stopping the model
execution before the application has reached the stop time that was defined
before the execution started. Because polling mode tries to be as optimal as
possible, any rapid-prototyping feature except signal logging is disabled. But
because I/0 driver blocks added to the model are fully functional, you can use
I/0 drivers to get to a minimal level of interactivity.

Stopping a target application using polling mode — You can use a
low-latency digital input driver for the digital PCI board in your model, which
reads in a single digital TTL signal. The signal is TTL low unless the model
execution should be stopped, for which the signal changes to TTL high. You can
connect the output port of the digital input driver block to the input port of a
Stop simulation block, found in the standard Simulink block library. This stops
the execution of the target application, depending on the state of the digital
input signal. You can either use a hardware switch connected to the
board-specific input pin or you can generate the signal by other means. For
example, you could use another digital I/O board in the host machine and
connect the two boards (one in the host, the other in the target) over a couple
of wires. You could then use MathWorks Data Acquisition Toolbox to drive the
corresponding TTL output pin of the host board to stop the target application
execution from within MATLAB.

Polling Mode

Generally, you can use the same software/hardware setup for passing other
information back and forth during run time of the target application. It is
important to understand that any additional feature beside signal logging has
to be implemented at the model level, and it is therefore the user’s
responsibility to optimize for the minimal additional latency the feature
introduces. For example, being able to interactively stop the target application
execution is paid for by the introduction of an additional 1 us latency necessary
to read the digital signal over the digital I/O board. However, if you need to
read digital inputs from the plant hardware anyway, and not all lines are used,
you get the feature for free.

Polling Mode Performance

This is preliminary information. All benchmarks have been executed using a
1 GHz AMD Athlon machine, which is the same machine that is at the top of
the list displayed by xpcbench.

The minimum achievable base sample time for model Minimal (type help
xpcbench in the MATLAB Command Window for further information) is 1 us
with signal logging disabled and 2 us with signal logging enabled.

The minimum achievable base sample time for model f14 (type help xpcbench
for further information in the MATLAB window) using an ode4 fixed-step
integration algorithm is 4 us with signal logging disabled and 5 us with signal
logging enabled.

A more realistic model, which has been benchmarked, is a second-order
continuous controller accessing real hardware over two16 bit A/D channels and
two 16 bit D/A channels. The analog I/0O board used is the fast and low-latency
PMC-ADADIO from http://www.generalstandards.com, which is used in
conjunction with some recently developed and heavily optimized (lowest
latency) xPC Target drivers for this particular board. The minimum achievable
base sample time for this model using an ode4 fixed-step integration algorithm
is 11 ps with signal logging disabled and 12 us with signal logging enabled.
This equals a sample rate of almost 100 kHz. The achievable sample time for
the same model in interrupt mode is ~28 us or a sample rate of ~33 kHz. For
this application, the overall performance increase using polling mode is almost
a factor of 3.

10-13

10 Interrupts Versus Polling

10-14

xPC Target and Fortran

xPC Target supports the incorporation of Fortran code into Simulink models. This chapter describes
the following:

Introduction (p. 11-2) Use Simulink S-functions to incorporate Fortran code
into xPC Target.

Step-by-Step Example of Fortran and Follow the example to build your own xPC Target
xPC Target (p. 11-5) application with Fortran code.

11 . c Target and Fortran

11-2

Introduction

xPC Target supports Fortran in Simulink models with S-functions. (See
“Creating Fortran S-Functions” in the writing S-Functions documentation for
a description of how to incorporate Fortran code into Simulink models.) This
chapter describes how to incorporate Fortran into a Simulink model for xPC
Target.

This section has the following topics:

¢ “Simulink Demos Directory” on page 11-2
® “Prerequisites” on page 11-3

® “Steps to Incorporate Fortran in Simulink for xPC Target” on page 11-3

The example below uses one of the provided Fortran demo files, Atmosphere
model.

Simulink Demos Directory

The Simulink demos directory contains a tutorial and description on how to
incorporate Fortran code into a Simulink model using S-functions. To access
the tutorial and description,

1 In the MATLAB Command Window, type

demos
A list of MATLAB products appears on the left side of the window.

2 From the left side of the window, select Simulink, then Block
Diagramming Features.

A list of Simulink examples appears on the right side of the window.

3 Click Custom Code and Hand Coded Blocks: M, C/C++, Fortran, etc.).
The associated Simulink demos page opens.

4 Click Open this model.

A library of S-function examples is displayed.

Introduction

5 Double-click the Fortran S-functions block.

A library of Fortran S-functions and associated templates appears. This
library also contains a README block. This file contains the same
information as that contained in “Creating Fortran S-Functions” in the
writing S-Functions documentation. In that chapter, the sections “Creating
Level 2 Fortran S-Functions” and “Porting Legacy Code” are most applicable
to xPC Target.

Prerequisites
You must have the following to use Fortran for xPC Target applications:

® xPC Target Version 1.3 or later

¢ Compaq Visual Fortran Compiler Version 6.5 or later

Steps to Incorporate Fortran in Simulink for xPC
Target

This section lists the general steps to incorporate Fortran code into an xPC

Target application. Detailed commands follow in the accompanying examples:

Using the Fortran compiler, compile the Fortran code (subroutines (*.f)).
You will need to specify particular compiler options.

Write a C-MEX wrapper S-function for Simulink. This wrapper S-function
call